P Velge

University of Tours , Tours, Centre, France

Are you P Velge?

Claim your profile

Publications (75)210.23 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Infection of chicken with Salmonella may lead to a carrier-state characterized by the persistence of bacteria in the ceca for a long period of time and result in their excretion in feces This excretion is the source of contamination of their congeners and food During infection, enterocytes are the primary target cells for Salmonella, the producers of soluble factors which launch immune response and cells which are reciprocally responsive to surrounding immune cells This study used microarrays to compare the gene expression profile during carrier-state of enterocytes purified from infected and control chicks which are either resistant or susceptible to Salmonella Enteritidis carrier-state In total, we identified 271 genes significantly differentially expressed with an absolute fold change greater than 15 A global analysis determined interaction networks between differentially regulated genes Using an a priori approach, our analyses focused on differentially expressed genes which were transcriptionally linked to cytokines playing a major role in the fate of the immune response The expression of genes transcriptionally linked to type I interferon and TGF-β was down-regulated in infected chicks from both lines Gene expression linked to the Th1 axis suggests the latter is inhibited in both lines Finally, the expression of genes linked to IL-4, IL-5 and IL-13 indicates that susceptibility to carrier-state could be associated with a Th2 bias Overall, these results highlight that the response to Salmonella during the acute phase and carrier-state is different and that enterocytes play a central role in this response
    Veterinary Immunology and Immunopathology 01/2014; · 1.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Currently, food regulatory authorities consider all Listeria monocytogenes isolates as equally virulent. However, an increasing number of studies demonstrate extensive variations in virulence and pathogenicity of L. monocytogenes strains. Up to now, there is no comprehensive overview of the population genetic structure of L. monocytogenes taking into account virulence level. We have previously demonstrated that different low-virulence strains exhibit the same mutations in virulence genes suggesting that they could have common evolutionary pathways. New low-virulence strains were identified and assigned to phenotypic and genotypic Groups using cluster analysis. Pulsed-field gel electrophoresis, virulence gene sequencing and multi-locus sequence typing analyses were performed to study the genetic relatedness and the population structure between the studied low-virulence isolates and virulent strains. RESULTS: These methods showed that low-virulence strains are widely distributed in the two major lineages, but some are also clustered according to their genetic mutations. These analyses showed that low-virulence strains initially grouped according to their lineage, then to their serotypes and after which, they lost their virulence suggesting a relatively recent emergence. CONCLUSIONS: Loss of virulence in lineage II strains was related to point mutation in a few virulence genes (prfA, inlA, inlB, plcA). These strains thus form a tightly clustered, monophyletic group with limited diversity. In contrast, low-virulence strains of lineage I were more dispersed among the virulence strains and the origin of their loss of virulence has not been identified yet, even if some strains exhibited different mutations in prfA or inlA.
    BMC Microbiology 12/2012; 12(1):304. · 3.10 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
    MicrobiologyOpen. 09/2012; 1(3):243-58.
  • [show abstract] [hide abstract]
    ABSTRACT: The Salmonella outer membrane protein Rck mediates a Zipper entry mechanism controlled by tyrosine phosphorylation and class I phosphatidylinositol 3-kinase (PI 3-kinase). However, the underlying mechanism leading to this signaling cascade remains unclear. The present study showed that using Rck-coated beads or Rck-overexpressing Escherichia coli, Rck-mediated actin polymerization and invasion were blocked by PP2, a Src family tyrosine kinase inhibitor. In addition, phosphorylation of Src family kinases significantly increased after stimulation with Rck. The specific contribution of c-Src, one member of the Src family kinases, was demonstrated using c-Src-deficient fibroblasts or c-Src siRNA transfected epithelial cells. We also observed that Rck-mediated internalization led to the formation of a complex between c-Src and at least one tyrosine-phosphorylated protein. Furthermore, our results revealed that the c-Src signal molecule was upstream of PI 3-kinase during the Rck-mediated signaling pathway as Rck-mediated PI 3-kinase activation was blocked by PP2, and PI 3-kinase inhibitor had no effect on the Src phosphorylation. These results demonstrate the involvement of c-Src upstream of the PI 3-kinase in the Zipper entry process mediated by Rck.
    Journal of Biological Chemistry 07/2012; 287(37):31148-54. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella enterica subsp. enterica serotype Enteritidis is one of the major causes of gastroenteritis in humans due to consumption of poultry derivatives. Here we report the whole-genome sequence and annotation, including the virulence plasmid, of S. Enteritidis LA5, which is a chicken isolate used by numerous laboratories in virulence studies.
    Journal of bacteriology 05/2012; 194(9):2387-8. · 3.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.
    Journal of bacteriology 05/2012; 194(9):2385-6. · 3.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella enterica serotype Senftenberg (S. Senftenberg) has recently become more frequent in poultry flocks. Moreover some strains have been implicated in severe clinical cases. To explain the causes of this emergence in farm animals, 134 S. Senftenberg isolates from hatcheries, poultry farms and human clinical cases were analyzed. Persistent and non-persistent strains were identified in chicks. The non-persistent strains disappeared from ceca a few weeks post inoculation. This lack of persistence could be related to the disappearance of this serotype from poultry farms in the past. In contrast, persistent S. Senftenberg strains induced an intestinal asymptomatic carrier state in chicks similar to S. Enteritidis, but a weaker systemic infection than S. Enteritidis in chicks and mice. An in vitro analysis showed that the low infectivity of S. Senftenberg is in part related to its low capacity to invade enterocytes and thus to translocate the intestinal barrier. The higher capacity of persistent than non-persistent strains to colonize and persist in the ceca of chickens could explain the increased persistence of S. Senftenberg in poultry flocks. This trait might thus present a human health risk as these bacteria could be present in animals before slaughter and during food processing.
    PLoS ONE 01/2012; 7(4):e35782. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The folding and insertion of β-barrel proteins in the outer membrane of Gram-negative bacteria is mediated by the BAM complex, which is composed of the outer membrane protein BamA and four lipoproteins BamB to BamE. In Escherichia coli and/or Salmonella, the BamB lipoprotein is involved in (i) β-barrel protein assembly in the outer membrane, (ii) outer membrane permeability to antibiotics, (iii) the control of the expression of T3SS which are major virulence factors and (iv) the virulence of Salmonella. In E. coli, this protein has been shown to interact directly with BamA. In this study, we investigated the structure-function relationship of BamB in order to assess whether the roles of BamB in these phenotypes were inter-related and whether they require the interaction of BamB with BamA. For this purpose, recombinant plasmids harbouring point mutations in bamB were introduced in a ΔSalmonella bamB mutant. We demonstrated that the residues L173, L175 and R176 are crucial for all the roles of BamB and for the interaction of BamB with BamA. Moreover, the results obtained with a D229A BamB variant, which is unable to immunoprecipitate BamA, suggest that the interaction of BamB with BamA is not absolutely necessary for BamB function in outer-membrane protein assembly, T3SS expression and virulence. Finally, we showed that the virulence defect of the ΔbamB mutant is not related to its increased susceptibility to antimicrobials, as the D227A BamB variant fully restored the virulence of the mutant while having a similar antibiotic susceptibility to the ΔbamB strain. Overall, this study demonstrates that the different roles of BamB are not all inter-related and that L173, L175 and R176 amino-acids are privileged sites for the design of BamB inhibitors that could be used as alternative therapeutics to antibiotics, at least against Salmonella.
    PLoS ONE 01/2012; 7(11):e46050. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Salmonella outer membrane protein Rck mediates a Zipper-like entry mechanism controlled by Rac, the Arp2/3 complex, and actin polymerization. However, little is known about the early steps leading to Rac activation and Rck-mediated internalization. The use of pharmacological inhibitors or PI 3-kinase dominant-negative mutant induced more than 80% less invasion without affecting attachment. Moreover, Rck-mediated internalization caused an increase in the association of p85 with at least one tyrosine-phosphorylated protein, indicating that class I PI 3-kinase activity was stimulated. We also report that this PI 3-kinase activity is essential for Rac1 activation. However, Rac recruitment at the Rck-mediated entry site was independent of its activation. Using a pharmacological approach or Akt-knockout cells, we also demonstrated that Akt was phosphorylated in response to Rck-mediated internalization as demonstrated by immunoblotting analysis and that all three Akt isoforms were required during this process. Overall, our results describe a signaling pathway involving tyrosine phosphorylation, class I PI 3-kinase, Akt activation, and Rac activation, leading to Rck-dependent Zipper entry. The specificity of this signaling pathway with regard to that of the type 3 secretion system, which is the other invasion process of Salmonella, is discussed.
    The FASEB Journal 12/2011; 26(4):1569-81. · 5.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: There is increasing evidence that activation of innate immunity, in animals and man, by live vaccines, sub-unit vaccines or synthetic or non-synthetic stimulants can induce a profound and rapidly induced resistance to pathogens, including infectious agents that are unrelated to the stimulating antigen or agent. We review the evidence for this phenomenon and present the proposition that this approach might be used to stimulate immunity during the life of the animal when susceptibility to infection is high and when normal vaccination procedures may be inappropriate.
    Research in Veterinary Science 10/2011; 93(1):7-12. · 1.77 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Toll-like receptor 4 (TLR4), which recognizes lipopolysaccharide from Gram-negative bacteria, plays a major role in resistance of mice and humans to Salmonella infection. In chickens, Salmonella may establish a carrier state whereby bacteria are able to persist in the host organism without triggering clinical signs. Based on cellular morphological parameters, we developed a method, without using antibodies, to separate three cecal cell subpopulations: lymphocytes, enterocytes, and a population encompassing multiple cell types. We analyzed the mRNA expression of TLR4, interleukin-1β (IL-1β), IL-8, IL-12, and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) in cecal subpopulations of chicks from inbred lines resistant or susceptible to the carrier state infected with Salmonella enterica serovar Enteritidis. The results showed that resistance to the carrier state in chicks is associated with a larger percentage of lymphocytes and with higher levels of expression of TLR4 and IL-8 at homeostasis in the three cell subpopulations, as well as with a higher level of expression of LITAF in lymphocytes during the carrier state. In contrast to the early phase of infection, the carrier state is characterized by no major cell recruitment differences between infected and noninfected animals and no significant modification in terms of TLR4, IL-1β, IL-8, IL-12, and LITAF expression in all cell subpopulations measured. However, TLR4 expression increased in the lymphocytes of chicks from the susceptible line, reaching the same level as that in infected chicks from the resistant line. These observations suggest that the carrier state is characterized by a lack of immune activation and highlight the interest of working at the level of the cell population rather than that of the organ.
    Infection and immunity 05/2011; 79(8):3445-54. · 4.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Salmonella propagation by apparently healthy chickens could be decreased by the selection and use of chicken lines that are more resistant to carrier state. Using a reduced set of markers, this study investigates, for the first time to the authors' knowledge, the feasibility of a genomic selection approach for resistance to carrier state in hen lines. In this study, commercial laying hen lines were divergently selected for resistance to Salmonella carrier state at 2 different ages: young chicks and adults at the peak of lay. A total of 600 birds were typed with 831 informative SNP markers and artificially infected with Salmonella Enteritidis. Phenotypes were collected 28 d (389 young animals) or 38 d (208 adults) after infection. Two types of variance component analyses, including SNP data or not, were performed and compared. The set of SNP used was efficient in capturing a large part of the genetic variation. Average accuracies from mixed model equations did not change between analyses, showing that using SNP data does not increase information in this data set. These results confirm that genomic selection for Salmonella carrier state resistance in laying hens is promising. Nevertheless, a denser SNP coverage of the genome on a greater number of animals is still needed to assess its feasibility and efficiency.
    Poultry Science 04/2011; 90(4):731-6. · 1.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Chicken's ability to carry Salmonella without displaying disease symptoms leads to an invisible propagation of Salmonella in poultry stocks. Using chicken lines more resistant to carrier state could improve both animal health and food safety. Previous studies identified several QTL for resistance to carrier state. To improve genome coverage and QTL detection power we produced a new set of 480 informative SNP markers and genotyped a larger number of animals. Ten additional microchromosomes could be covered when compared with previous studies. These new data led to the identification of 18 QTL significant at the chromosome-wide level. The only QTL significant at the genome-wide level were identified on microchromosomes 14 and 22 and have never been identified previously. Using a higher number of animals improved the power and the precision of QTL detection. Some of the QTL newly identified are located close to candidate genes or microsatellite markers previously identified for their involvement in the genetic control of resistance to Salmonella, which confirms their interest for selection purposes.
    MGG Molecular & General Genetics 03/2011; 285(3):237-43. · 2.58 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.
    PLoS ONE 01/2011; 6(9):e24112. · 3.73 Impact Factor
  • Philippe Velge, Sylvie Marie Roche
    [show abstract] [hide abstract]
    ABSTRACT: The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
    Future Microbiology 12/2010; 5(12):1799-821. · 4.02 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.
    Microbiology 11/2010; 157(Pt 3):839-47. · 3.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cytotoxic activity levels of culture filtrates and toxin distributions varied according to the phylogenetic group (I to VII) within the Bacillus cereus group, suggesting that these groups are of different clinical significance and are more suitable than species affiliations for determining food poisoning risk. A first-line, simple online tool (https://www.tools.symprevius.org/Bcereus/english.php) to assign strains to the different phylogenetic groups is presented.
    Journal of clinical microbiology 09/2010; 48(9):3388-91. · 4.16 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Improving the fowl's natural ability to clear Salmonella from their body is important in reducing disease prevalence in poultry flocks, as recommended by a recent regulation of the European Commission. It may be efficient, as expected from estimation of heritability coefficients : 0.16 in chicks and 0.18 for global contamination of hens. The animal's age has to be considered since the genetic correlation between resistances at the two ages is negative. Selecting two series of divergent lines for increased or decreased resistance, after inoculation at one week of age (chick resistance) or at the peak of lay (adult resistance) confirmed the efficiency at least of selection for the adult resistance. In parallel, genes controlling variations to Salmonella resistance were researched and several QTLs identified in crosses between experimental lines and, for some of them, confirmed in commercial lines. Thanks to the derivation of a model of Salmonella propagation within a flock, it has been shown that a combination of vaccination and genetic selection can result in very low percentage of contamination.
    World's Poultry Science Journal 05/2010; 66(02):251 - 260. · 1.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Salmonella can invade non-phagocytic cells through its type III secretion system (T3SS-1), which induces a Trigger entry process. This study showed that Salmonella enterica, subspecies enterica serovar Enteritidis can also invade cells via the Rck outer membrane protein. Rck was necessary and sufficient to enable non-invasive E. coli and Rck-coated beads to adhere to and invade different cells. Internalization analysis of latex beads coated with different Rck peptides showed that the peptide containing amino acids 140-150 promoted adhesion, whereas amino acids between 150 and 159 modulated invasion. Expression of dominant-negative derivatives and use of specific inhibitors demonstrated the crucial role of small GTPases Rac1 and Cdc42 in activating the Arp2/3 complex to trigger formation of actin-rich accumulation, leading to Rck-dependent internalization. Finally, scanning and transmission electron microscopy with Rck-coated beads and E. coli expressing Rck revealed microvillus-like extensions that formed a Zipper-like structure, engulfing the adherent beads and bacteria. Overall, our results provide new insights into the Salmonella T3SS-independent invasion mechanisms and strongly suggest that Rck induces a Zipper-like entry mechanism. Consequently, Salmonella seems to be the first bacterium found to be able to induce both Zipper and Trigger mechanisms to invade host cells.
    Cell Research 04/2010; 20(6):647-64. · 10.53 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cytotoxic activity levels of culture filtrates and toxin distribution varied according to the phylogenetic group (I-VII) inside the B. cereus Group, suggesting that these groups are of different clinical significance and are more suitable than species affiliation for determining food poisoning risk. A first-line, simple online tool (https://www.tools.symprevius.org/Bcereus/) to assign strains to the different phylogenetic groups is presented.
    Journal of Clinical Microbiology. 01/2010;

Publication Stats

1k Citations
295 Downloads
210.23 Total Impact Points

Institutions

  • 2012
    • University of Tours
      Tours, Centre, France
  • 1991–2012
    • French National Institute for Agricultural Research
      • Centre de Recherche de Tours
      Lutetia Parisorum, Île-de-France, France
  • 1991–2005
    • Institut Pasteur
      Lutetia Parisorum, Île-de-France, France
  • 1989
    • Unité Inserm U1077
      Caen, Lower Normandy, France