Patricia Rivera

Instituto de Salud Carlos III, Madrid, Madrid, Spain

Are you Patricia Rivera?

Claim your profile

Publications (25)88.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.
    Frontiers in Integrative Neuroscience 01/2014; 8:22.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
    PLoS ONE 01/2014; 9(2):e90016. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
    Frontiers in Neuroanatomy 01/2014; 8:12. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.
    Frontiers in Neuroanatomy 01/2014; 8:56. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
    Frontiers in Integrative Neuroscience 01/2014; 7:106.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine is associated with serious health problems including psychiatric co-morbidity. There is a need for the identification of biomarkers for the stratification of cocaine-addicted subjects. Several studies have evaluated circulating endocannabinoid-related lipids as biomarkers of inflammatory, metabolic and mental disorders. However, little is known in substance use disorders. This study characterizes both free N-acyl-ethanolamines (NAEs) and 2-acyl-glycerols in abstinent cocaine addicts from outpatient treatment programs who were diagnosed with cocaine use disorder (CUD; n = 88), and age-/gender-/body mass-matched healthy control volunteers (n = 46). Substance and mental disorders that commonly occur with substance abuse were assessed by the semi-structured interview 'Psychiatric Research Interview for Substance and Mental Diseases' according to the 'Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision' (DSM-IV-TR) and plasma-free acyl derivatives were quantified by a liquid chromatography-tandem mass spectrometry system. The results indicate that plasma acyl derivatives are altered in abstinent cocaine-addicted subjects with CUD (CUD subjects). While NAEs were found to be increased, 2-acyl-glycerols were decreased in CUD subjects compared with controls. Multivariate predictive models based on these lipids as explanatory variables were developed to distinguish CUD subjects from controls providing high discriminatory power. However, these alterations were not influenced by the DSM-IV-TR criteria for cocaine abuse and dependence as cocaine trait severity measure. In contrast, we observed that some free acyl derivatives in CUD subjects were found to be affected by the diagnosis of some co-morbid psychiatric disorders. Thus, we found that the monounsaturated NAEs were significantly elevated in CUD subjects diagnosed with mood [N-oleoyl-ethanolamine and N-palmitoleoyl-ethanolamine (POEA)] and anxiety (POEA) disorders compared with non-co-morbid CUD subjects. Interestingly, the coexistence of alcohol use disorders did not influence the circulating levels of these free acyl derivatives. In summary, we have identified plasma-free acyl derivatives that might serve as reliable biomarkers for CUD. Furthermore, we found that monounsaturated NAE levels are also enhanced by co-morbid mood and anxiety disorders in cocaine addicts. These findings open the way for the development of new strategies for cocaine addiction diagnosis and treatment.
    Addiction Biology 11/2013; 18(6):955-969. · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating the peroxisome proliferator-activating receptor-α (PPARα) in the white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association was monitored on feeding, thermogenesis, β-oxidation and lipid/cholesterol metabolism in epididymal (e)WAT. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as lowered plasma levels of triglycerides, cholesterol, NEFAs and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes, as the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were over-expressed in eWAT. The enhancement of the fatty acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied with an up-regulation of de novo lipogenesis and a reduction of the unsaturated fatty acid synthesis enzyme Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promote therapeutic adipocyte remodelling in eWAT that confer a potential clinical utility for the treatment of obesity.
    Disease Models and Mechanisms 10/2013; · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review analyzes the roles of lipid transmitters, especially those derived from the cleavage of membrane phospholipids, in cocaine-associated behaviors. These lipid signals are important modulators of information processing in the brain, affecting transmitter release, neural plasticity, synaptogenesis, neurogenesis, and cellular energetics. This broad range of actions makes them suitable targets for pharmaceutical development of cocaine addiction therapies because they participate in the main cellular processes underlying the neuroadaptations associated with chronic use of this psychostimulant. The main lipid transmitters reviewed here include a) acylethanolamides and acylglycerols acting on cannabinoid receptors, such as anandamide and 2-arachidonoylglycerol; b) acylethanolamides that do not act on cannabinoid receptors, such as oleoylethanolamide; c) eicosanoids derived from arachidonic acid, including prostaglandins; and d) lysophosphatidic acid, focusing on the role of its LPA-1 receptor. Direct experimental evidence for the significance of these lipids in cocaine-related behaviors is presented and discussed. Additionally, the roles for both their biosynthesis and degradation pathways, as well as the participation of their receptors, are examined. Overall, lipid transmitter signaling can offer new targets for the development of therapies for cocaine addiction.
    Current pharmaceutical design 04/2013; · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.
    PLoS ONE 01/2013; 8(5):e64750. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) are modulators of glutamate and γ-aminobutyric acid (GABA), two transmitters involved in cocaine addiction. However, little is known on the effects of cocaine on the enzymes that produce and degrade endocannabinoids. The present work addresses the effects of cocaine self-administration on the immunohistochemical expression of endocannabinoid signalling (ECS)-related proteins in the hippocampus. The study has been performed on two different strains of rats, Lewis (Lew) and Fischer 344 (F344), which are characterized for displaying a differential sensitivity to cocaine, thus making them suitable in the study of vulnerability to drug addiction. Both strains showed differences in the expression of ECS-related proteins in the hippocampus, i.e. Lew rats exhibited lower CB1 expression but higher CB2 expression than F344 rats. After setting similar cocaine self-administration, both strains showed clear differences in the expression of ECS-related proteins, which were differentially restricted to either the 2-AG or anandamide signalling pathways in a self-administration training/drug-dependent manner. The decreases observed in CB1 expression and N-acyl phosphatidylethanolamine phospholipase D:fatty acid amino hydrolase ratio after saline self-administration were enhanced only in cocaine self-administered Lew rats. CB2 expression increase and diacylglycerol lipase α:monoacylglycerol lipase ratio decrease detected after saline self-administration were blocked only in cocaine self-administered F344 rats. These findings indicate that cocaine may regulate hippocampal GABA/glutamate synapses by directly modulating endocannabinoid production/degradation enzymes and that these actions are strain-dependent. This differential response suggests that the endogenous cannabinoid system might contribute to genotype/strain differences on the sensitivity to self-administration training and cocaine addiction.
    The International Journal of Neuropsychopharmacology 12/2012; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diet-induced obesity produces changes in endocannabinoid signaling (ECS), influencing the regulation of energy homeostasis. Recently, we demonstrated that, in high-fat-diet-fed rats, blockade of CB1 receptor by AM251 not only reduced body weight but also increased adult neurogenesis in the hippocampus, suggesting an influence of diet on hippocampal cannabinoid function. To further explore the role of hippocampal ECS in high-fat-diet-induced obesity, we investigated whether the immunohistochemical expression of the enzymes that produce (diacylglycerol lipase alpha and N-acyl phosphatidylethanolamine phospholipase D) and degrade (monoacylglycerol lipase and fatty acid amino hydrolase) endocannabinoids may be altered in the hippocampus of AM251 (3 mg/kg)-treated rats fed three different diets: standard diet (normal chow), high-carbohydrate diet (70% carbohydrate) and high-fat diet (60% fat). Results indicated that AM251 reduced caloric intake and body weight gain, and induced a modulation of the expression of ECS-related proteins in the hippocampus of animals exposed to hypercaloric diets. These effects were differentially restricted to either the 2-arachinodoyl glycerol or anandamide signaling pathways, in a diet-dependent manner. AM251-treated rats fed the high-carbohydrate diet showed a reduction of the diacylglycerol lipase alpha : monoacylglycerol lipase ratio, whereas AM251-treated rats fed the high-fat diet showed a decrease of the N-acyl phosphatidylethanolamine phospholipase D : fatty acid amino hydrolase ratio. These results are consistent with the reduced levels of hippocampal endocannabinoids found after food restriction. Regarding the CB1 expression, AM251 induced specific changes focused in the CA1 stratum pyramidale of high-fat-diet-fed rats. These findings indicated that the cannabinoid antagonist AM251 modulates ECS-related proteins in the rat hippocampus in a diet-specific manner. Overall, these results suggest that the hippocampal ECS participates in the physiological adaptations to different caloric diets.
    European Journal of Neuroscience 10/2012; · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have modelled elaidyl-sulfamide (ES), a sulfamoyl analogue of oleoylethanolamide (OEA). ES is a lipid mediator of satiety that works through the peroxisome proliferator-activated receptor alpha (PPARα). We have characterised the pharmacological profile of ES (0.3-3 mg/kg body weight) by means of in silico molecular docking to the PPARα receptor, in vitro transcription through PPARα, and in vitro and in vivo administration to obese rats. ES interacts with the binding site of PPARα in a similar way as OEA does, is capable of activating PPARα and also reduces feeding in a dose-dependent manner when administered to food-deprived rats. When ES was given to obese male rats for 7 days, it reduced feeding and weight gain, lowered plasma cholesterol and reduced the plasmatic activity of transaminases, indicating a clear improvement of hepatic function. This pharmacological profile is associated with the modulation of both cholesterol and lipid metabolism regulatory genes, including the sterol response element-binding proteins SREBF1 and SREBF2, and their regulatory proteins INSIG1 and INSIG2, in liver and white adipose tissues. ES treatment induced the expression of thermogenic regulatory genes, including the uncoupling proteins UCP1, UCP2 and UCP3 in brown adipose tissue and UCP3 in white adipose tissue. However, its chronic administration resulted in hyperglycaemia and insulin resistance, which represent a constraint for its potential clinical development.
    Disease Models and Mechanisms 06/2012; 5(5):660-70. · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that the endocannabinoid system, through cannabinoid CB1 receptor activation, has an important role in the main aspects of energy balance (i.e. food intake, energy expenditure and glucose and fat metabolism), orchestrating all the machinery involved in body weight control and energy homeostasis. A number of studies have revealed a crucial role of brain CB1 receptors in these processes. However, functional cannabinoid CB2 receptors have also been described in the brain, with no studies addressing their putative role in body weight control and glucose homeostasis. We have tested this hypothesis by analysing fasting-induced feeding, body weight, some hypothalamic neuropeptides, glucose tolerance and plasma hormones in an animal model specifically overexpressing CB2 receptors in the central nervous system. We found that specific overexpression of CB2 receptors in the brain promoted higher basal glucose levels, decreased fasting-induced feeding and, eventually, led to a lean phenotype and glucose intolerance. These findings could not be attributed to decreased locomotor activity, increased anxiety or depressive-like behaviours. The expression of relevant neuropeptides such as pro-opiomelanocortin and galanin in the arcuate nucleus of the hypothalamus was altered but not those of the CB1 receptor. Indeed, no changes in CB1 expression were found in the liver, skeletal muscle and adipose tissue. However, cannabinoid CB1 and CB2 receptor expression in the endocrine pancreas and glucagon plasma levels were decreased. No changes in plasma adiponectin, leptin, insulin and somatostatin were found. Taken together, these results suggest a role for central cannabinoid CB2 receptors in body weight control and glucose homeostasis.
    Journal of Neuroendocrinology 04/2012; 24(8):1106-19. · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhancement of adiponectin level has been shown to have beneficial effects, including antiobesity, antidiabetic, and hepatoprotective effects. This evidence supports the therapeutic utility of adiponectin in complicated obesity. The present study characterized the in vivo effects of sustained adiponectin release by NP-1, a new class of thiazol derivative that increases adiponectin levels. Acute administration of NP-1 reduced feeding, increased plasma adiponectin, and improved insulin sensitivity without inducing malaise, as revealed by conditioned taste aversion studies. Short-term (7 days) treatment with NP-1 also reduced feeding and body weight gain and increased phosphorylation of AMPK in muscle, a main intracellular effector of adiponectin. NP-1 was also evaluated in diet-induced obesity, and adult male Wistar rats were fed two different types of diet: a standard high-carbohydrate/low-fat diet (SD) and a high-fat diet (HFD). Once obesity was established, animals were treated daily with NP-1 (5 mg/kg) for 14 consecutive days. Chronic NP-1 induced body weight loss and reduction of food intake and resulted in both a marked decrease in liver steatosis and an improvement of biochemical indexes of liver damage in HFD-fed rats. However, a marked induction of tolerance in adiponectin gene transcription and release was observed after chronic NP-1 with respect to the acute actions of this drug. The present results support the role of adiponectin signaling in diet-induced obesity and set in place a potential use of compounds able to induce adiponectin release for the treatment of obesity and nonalcoholic fatty liver, with the limits imposed by the induction of pharmacological tolerance.
    AJP Endocrinology and Metabolism 01/2012; 302(7):E817-30. · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in animal models and humans suggest anti-inflammatory roles on the N-acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.
    PLoS ONE 01/2012; 7(5):e37729. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity, and affective control. The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol (EtOH)-exposed rats were generated by maintenance on an EtOH liquid diet (10%): the first group received continuous access to EtOH for 15 days, whereas the second group was given intermittent access to the EtOH diet (5 d/wk for 3 weeks). Control subjects were maintained on an isocaloric EtOH-free liquid diet. To provide an initial profile of acute withdrawal, amygdala tissue was harvested following either 6 or 24 hours of EtOH withdrawal. Acute EtOH withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) were evident, as were reductions in mRNA expression for CB(1) , CB(2) , and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent EtOH exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g., CB(1) , CB(2) , GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in 2-AG biosynthesis (e.g., diacylglicerol lipase-α/β) were found in any condition. These findings suggest that EtOH dependence and withdrawal are associated with dysregulated endocannabinoid signaling in the amygdala. These alterations may contribute to withdrawal-related dysregulation of amygdalar neurotransmission.
    Alcoholism Clinical and Experimental Research 12/2011; 36(6):984-94. · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoids (anandamide and 2-AG) are relevant modulators of appetite and energy expenditure through their action on cannabinoid CB(1) receptors. The actions of anandamide on feeding behavior are dependent both, on the anatomical location of CB(1) receptors (central nervous system versus peripheral tissues) and the feeding status. Anandamide uptake into cells, prior to its degradation by specific enzymatic systems, is a necessary step for the regulation of its extracellular levels. The present study explores the route and feeding stimulus dependency of the effects of the anandamide uptake blocker AM404. Peripherally, AM404 reduced feeding in partially satiated animals through a PPARα-independent mechanism, but not in food deprived ones. When AM404 was injected into the cerebral ventricles of food deprived rats, it resulted in hyperphagia that was antagonized by the cannabinoid receptor inverse agonist SR141716A. These results support the multimodal action of endocannabinoid signaling in feeding regulation, which depends on the anatomical site and the feeding status of the animal.
    Pharmacology Biochemistry and Behavior 11/2011; 101(1):1-7. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bromodeoxyuridine (BrdU) is the most widely used marker to detect proliferative cells in the adult brain. Here we analyse whether the route of administration of the tracer influences the number of labelled cells. For the intraperitoneal (ip) administration of BrdU, we performed two daily injections during 7 days, and for an intracerebroventricular (icv) delivery, it was continuously infused into one lateral ventricle for a 7 days period as well. After ip administration, cells labelled with BrdU were seen in the subventricular zone of the striatal wall of the lateral ventricle, the hippocampus and the neurohemal circumventricular organs. Also, the habenula and large myelinated tracts, such as the fornix and the corpus callosum, showed many BrdU-positive nuclei. Labelled nuclei were scarce in the parenchymal regions of the rest of the brain. In contrast, a significant increase in the number of BrdU-positive nuclei was observed in the parenchyma of the periventricular zones after icv administration of the marker, thus showing a greater availability of the tracer when it was administered directly into the ventricular cerebrospinal fluid. We suggest that the availability of BrdU in the vicinity of proliferating cells may depend on the permeability of the brain vessels to nucleosides in each location. By using double immunocytochemistry we found that neurons, astrocytes, oligodendrocytes, tanycytes and microglia had incorporated the tracer, demonstrating their proliferation capacity.
    Journal of neuroscience methods 08/2011; 201(2):307-14. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lack of safe and effective treatments for obesity has increased interest in natural products that may serve as alternative therapies. From this perspective, we have analysed the effects of daidzein, one of the main soy isoflavones, on diet-induced obesity in rats. Rats made obese after exposure to a very (60%) high fat-content diet were treated with daidzein (50 mg·kg(-1)) for 14 days. The dose was selected on the basis of the acute effects of this isoflavone on a feeding test. After 14 days, animals were killed and plasma, white and brown adipose tissue, muscle and liver studied for the levels and expression of metabolites, proteins and genes relevant to lipid metabolism. A single treatment (acute) with daidzein dose-dependently reduced food intake. Chronic treatment (daily for 14 days) reduced weight gain and fat content in liver, accompanied by high leptin and low adiponectin levels in plasma. While skeletal muscle was weakly affected by treatment, both adipose tissue and liver displayed marked changes after treatment with daidzein, affecting transcription factors and lipogenic enzymes, particularly stearoyl coenzyme A desaturase 1, a pivotal enzyme in obesity. Expression of uncoupling protein 1, an important enzyme for thermogenesis, was increased in brown adipose tissue after daidzein treatment. These results support the use of isoflavones in diet-induced obesity, especially when hepatic steatosis is present and open a new field of use for these natural products.
    British Journal of Pharmacology 05/2011; 164(7):1899-915. · 5.07 Impact Factor