P. G. Pérez-González

Complutense University of Madrid, Madrid, Madrid, Spain

Are you P. G. Pérez-González?

Claim your profile

Publications (228)818.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Square Kilometre Array (SKA) is called to revolutionise essentially all areas of Astrophysics. With a collecting area of about a square kilometre, the SKA will be a transformational instrument, and its scientific potential will go beyond the interests of astronomers. Its technological challenges and huge cost requires a multinational effort, and Europe has recognised this by putting the SKA on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI). The Spanish SKA White Book is the result of the coordinated effort of 119 astronomers from 40 different research centers. The book shows the enormous scientific interest of the Spanish astronomical community in the SKA and warrants an optimum scientific exploitation of the SKA by Spanish researchers, if Spain enters the SKA project.
  • [Show abstract] [Hide abstract]
    ABSTRACT: [abridged] We quantify the morphological evolution of z~0 massive galaxies ($M*/M_\odot\sim10^{11}$) from z~3 in the 5 CANDELS fields. The progenitors are selected using abundance matching techniques to account for the mass growth. The morphologies strongly evolve from z~3. At z<1, the population matches the massive end of the Hubble sequence, with 30% of spheroids, 50% of galaxies with equally dominant disk and bulge components and 20% of disks. At z~2-3 there is a majority of irregular systems (~60-70%) with still 30% of spheroids. We then analyze the SFRs, gas fractions and structural properties for the different morphologies independently. Our results suggest two distinct channels for the growth of bulges in massive galaxies. Around 30-40% were already bulges at z~2.5, with low average SFRs and gas-fractions (10-15%), high Sersic indices (n>3-4) and small effective radii ($R_e$~1 kpc) pointing towards an early formation through gas-rich mergers or VDI. Between z~ 2.5 and z~0, they rapidly increase their size by a factor of ~4-5, become all passive but their global morphology remains unaltered. The structural evolution is independent of the gas fractions, suggesting that it is driven by ex-situ events. The remaining 60% experience a gradual morphological transformation, from clumpy disks to more regular bulge+disks systems, essentially happening at z>1. It results in the growth of a significant bulge component (n~3) for 2/3 of the systems possibly through the migration of clumps while the remaining 1/3 keeps a rather small bulge (n~1.5-2). The transition phase between disturbed and relaxed systems and the emergence of the bulge is correlated with a decrease of the star formation activity and the gas fractions. The growth of the effective radii scales roughly with $H(z)^{-1}$ and it is therefore consistent with the expected growth of disks in galaxy haloes.
  • Source
    Dataset: 1407.5097v2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several authors have reported that the dynamical masses of massive compact galaxies (M_star > 10^11 M_sun, r_e ~ 1 kpc), computed as M_dyn = 5.0 sigma_e^2 r_e / G, are lower than their stellar masses M_star. In a previous study from our group, the discrepancy is interpreted as a breakdown of the assumptions of virial equilibrium and homology that underlie the M_dyn determinations. Here we present new spectroscopy of six redshift z~1.0 massive compact ellipticals from the Extended Groth Strip, obtained with the 10.4-m Gran Telescopio Canarias. We obtain velocity dispersions in the range 161 to 340 km s^-1. As found by previous studies of massive compact galaxies, our velocity dispersions are lower than the virial expectation, and all of our galaxies show M_dyn < M_star. Adding data from the literature, we build a sample covering a range of stellar masses and compactness in a narrow redshift range z~1.0. This allows us to exclude systematic effects on the data and evolutionary effects on the galaxy population, which could have affected previous studies. We confirm that mass discrepancy scales with galaxy compactness. We use the stellar mass plane (M_star, sigma_e, r_e) populated by our sample to constrain a generic evolution mechanism. We find that the simulations of the growth of massive ellipticals due to mergers agree with our constraints and discard the homologous virial theorem.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck-I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy (SFG) at a redshift $z\sim1.7$. Its spectrum reveals both H$_{\alpha}$ and [NII] emission lines and strong Balmer absorption lines. The H$_{\alpha}$ and Spitzer MIPS 24 $\mu$m fluxes are both weak, thus indicating a low star formation rate of SFR $\lesssim5-10$ M$_{\odot}$ yr$^{-1}$. This, added to a relatively young age of $\sim700$ Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to 3 other galaxies in our sample, by $z\sim1.5$. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, $\sigma^{\rm{gas}}_{\!_{\rm LOS}}=127\pm32$ km s$^{-1}$, is nearly 40% smaller than that of its stars, $\sigma^{\star}_{\!_{\rm LOS}}=215\pm35$ km s$^{-1}$. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of $\sim1.5$ with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new measurements of the evolution of the X-ray luminosity functions (XLFs) of unabsorbed and absorbed Active Galactic Nuclei (AGNs) out to z~5. We construct samples containing 2957 sources detected at hard (2-7 keV) X-ray energies and 4351 sources detected at soft (0.5-2 keV) energies from a compilation of Chandra surveys supplemented by wide-area surveys from ASCA and ROSAT. We consider the hard and soft X-ray samples separately and find that the XLF based on either (initially neglecting absorption effects) is best described by a new flexible model parametrization where the break luminosity, normalization and faint-end slope all evolve with redshift. We then incorporate absorption effects, separately modeling the evolution of the XLFs of unabsorbed ($20<\log N_H<22$) and absorbed ($22<\log N_H<24$) AGNs, seeking a model that can reconcile both the hard- and soft-band samples. We find that the absorbed AGN XLF generally has a lower break luminosity, a higher normalization, and a steeper faint-end slope than the unabsorbed AGN XLF. Hence, absorbed AGNs tend to dominate at low luminosities, with the absorbed fraction falling rapidly as luminosity increases. The XLFs of both populations undergo strong luminosity evolution which shifts the transition in the absorbed fraction to higher luminosities at higher redshifts. However, differences in the evolution of the two XLFs lead to a comparatively complex evolution in the shape of the total XLF of AGNs. Our work indicates that the evolution of AGNs may be driven by a combination of changes in the distributions of black hole mass and/or Eddington ratio, as well as the life cycles of unabsorbed and absorbed growth phases.
    Monthly Notices of the Royal Astronomical Society 03/2015; 451(2). DOI:10.1093/mnras/stv1062 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$\alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$\alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$\alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$\alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
    Astronomy and Astrophysics 02/2015; 577. DOI:10.1051/0004-6361/201425359 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the stellar initial mass function (IMF) of a sample of 49 massive quiescent galaxies (MQGs) at 0.9 < z < 1.5. We base our analysis on intermediate resolution spectro-photometric data in the GOODS-N field taken in the near-infrared and optical with the Hubble Space Telescope Wide Field Camera 3 G141 grism and the Survey for High-z Absorption Red and Dead Sources. To constrain the slope of the IMF, we have measured the TiO2 spectral feature, whose strength depends strongly on the content of low-mass stars, as well as on stellar age. Using ultraviolet to near-infrared individual and stacked spectral energy distributions, we have independently estimated the stellar ages of our galaxies. Knowing the age of the stellar population, we interpret the strong differences in the TiO2 feature as an IMF variation. In particular, for the heaviest z ~ 1 MQGs (M > 1011 M ☉), we find an average age of 1.7 ± 0.3 Gyr and a bottom-heavy IMF (Γ b = 3.2 ± 0.2). Lighter MQGs (2 × 1010 < M < 1011 M ☉) at the same redshift are younger on average (1.0 ± 0.2 Gyr) and present a shallower IMF slope (Γ _b=2.7+0.3-0.4). Our results are in good agreement with the findings about the IMF slope in early-type galaxies of similar mass in the present-day universe. This suggests that the IMF, a key characteristic of the stellar populations in galaxies, is bottom-heavier for more massive galaxies and has remained unchanged in the last ~8 Gyr.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of galaxies showing mid-infrared variability in data taken in the deepest Spitzer/MIPS 24 $\mu$m surveys in the GOODS-South field. We divide the dataset in epochs and subepochs to study the long-term (months-years) and the short-term (days) variability. We use a $\chi^2$-statistics method to select AGN candidates with a probability $\leq$ 1% that the observed variability is due to statistical errors alone. We find 39 (1.7% of the parent sample) sources that show long-term variability and 55 (2.2% of the parent sample) showing short-term variability. That is, 0.03 sources $\times$ arcmin$^{-2}$ for both, long-term and short-term variable sources. After removing the expected number of false positives inherent to the method, the estimated percentages are 1.0% and 1.4% of the parent sample for the long-term and short-term respectively. We compare our candidates with AGN selected in the X-ray and radio bands, and AGN candidates selected by their IR emission. Approximately, 50% of the MIPS 24 $\mu$m variable sources would be identified as AGN with these other methods. Therefore, MIPS 24 $\mu$m variability is a new method to identify AGN candidates, possibly dust obscured and low luminosity AGN, that might be missed by other methods. However, the contribution of the MIPS 24 $\mu$m variable identified AGN to the general AGN population is small ($\leq$ 13%) in GOODS-South.
    Monthly Notices of the Royal Astronomical Society 10/2014; 446(3). DOI:10.1093/mnras/stu2204 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lenticular galaxies (S0s) are more likely to host antitruncated (Type-III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent mechanisms to form these breaks. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks are quantitatively characterized to compare with real data. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type-III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. The trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type-III S0s fulfill: h_i \prop R_brkIII, h_o \prop R_brkIII, and mu_brkIII \prop R_brkIII, where h_i and h_o are the scalelenghts of the inner and outer discs, and mu_brkIII and R_brkIII are the surface brightness and radius of the breaks. Mayor mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies (abridged).
    Astronomy and Astrophysics 07/2014; 570. DOI:10.1051/0004-6361/201424299 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine multiwavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected AGN [Lx(2-10keV)>1e42 erg/s] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; Lir>1e11 solar) and quiescent systems at z~1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift Probability Distribution Functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6<z<1.4 are found in halos of similar mass, $\log M_{DMH}/(M_{\odot}\,h^{-1})\approx13.0$. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of $\log M_{DMH}/(M_{\odot}\,h^{-1})\approx13.0$ independent of their star-formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large scale environment may be related to differences in the stellar mass of the host galaxies.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). DOI:10.1093/mnras/stu1326 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are undertaking a search for high-redshift low luminosity Lyman Alpha sources in the SHARDS survey. Among the pre-selected Lyman Alpha sources 2 candidates were spotted, located 3.19 arcsec apart, and tentatively at the same redshift. Here we report on the spectroscopic confirmation with GTC of the Lyman Alpha emission from this pair of galaxies at a confirmed spectroscopic redshifts of z=5.07. Furthermore, one of the sources is interacting/merging with another close companion that looks distorted. Based on the analysis of the spectroscopy and additional photometric data, we infer that most of the stellar mass of these objects was assembled in a burst of star formation 100 Myr ago. A more recent burst (2 Myr old) is necessary to account for the measured Lyman Alpha flux. We claim that these two galaxies are good examples of Lyman Alpha sources undergoing episodic star formation. Besides, these sources very likely constitute a group of interacting Lyman Alpha emitters (LAEs).
    Monthly Notices of the Royal Astronomical Society Letters 06/2014; 444(1). DOI:10.1093/mnrasl/slu099 · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.
    Ground-based and Airborne Instrumentation for Astronomy V, Montreal; 06/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2\leq z \leq2.5$ with star formation rates of SFR$\sim$100M$_{\odot}$ y$^{-1}$ and masses of log(M/M$_{\odot}$)$\sim10.8$. Their high integrated gas velocity dispersions of $\sigma_{\rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{\alpha}$ and [OIII], and the resultant M$_{\star}-\sigma_{\rm{int}}$ relation and M$_{\star}$$-$M$_{\rm{dyn}}$ all match well to those of compact quiescent galaxies at $z\sim2$, as measured from stellar absorption lines. Since log(M$_{\star}$/M$_{\rm{dyn}}$)$=-0.06\pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($<$13$^{+17}_{-13}$\%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than $\sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at $z\gtrsim2$ are already losing gas to become the immediate progenitors of compact quiescent galaxies by $z\sim2$.
    The Astrophysical Journal 05/2014; 795(2). DOI:10.1088/0004-637X/795/2/145 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.
    Monthly Notices of the Royal Astronomical Society 05/2014; 442(1). DOI:10.1093/mnras/stu868 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34<z<1.07 with ultra-deep (m=26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 AA break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (L_X<10^44 erg/s) are hosted by massive galaxies (typically M*>10^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000)~1.4 and light weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognising these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.
    Monthly Notices of the Royal Astronomical Society 04/2014; 443(4). DOI:10.1093/mnras/stu1413 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Observatory in Spain with a purpose-built, dedicated 2.5m telescope and a 4.7 sq.deg. camera with 1.2Gpix. Starting in late 2015, J-PAS will observe 8500sq.deg. of Northern Sky and measure $0.003(1+z)$ photo-z for $9\times10^7$ LRG and ELG galaxies plus several million QSOs, sampling an effective volume of $\sim 14$ Gpc$^3$ up to $z=1.3$ and becoming the first radial BAO experiment to reach Stage IV. J-PAS will detect $7\times 10^5$ galaxy clusters and groups, setting constrains on Dark Energy which rival those obtained from its BAO measurements. Thanks to the superb characteristics of the site (seeing ~0.7 arcsec), J-PAS is expected to obtain a deep, sub-arcsec image of the Northern sky, which combined with its unique photo-z precision will produce one of the most powerful cosmological lensing surveys before the arrival of Euclid. J-PAS unprecedented spectral time domain information will enable a self-contained SN survey that, without the need for external spectroscopic follow-up, will detect, classify and measure $\sigma_z\sim 0.5\%$ redshifts for $\sim 4000$ SNeIa and $\sim 900$ core-collapse SNe. The key to the J-PAS potential is its innovative approach: a contiguous system of 54 filters with $145\AA$ width, placed $100\AA$ apart over a multi-degree FoV is a powerful "redshift machine", with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. The J-PAS camera is equivalent to a 4.7 sq.deg. "IFU" and it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chandra data in the COSMOS, AEGIS-XD and 4Ms CDFS are combined with optical/near-IR photometry to determine the rest-frame U-V vs V-J colours of X-ray AGN hosts at mean redshifts 0.40 and 0.85. This combination of colours (UVJ) provides an efficient means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasises differences between AGN split by their UVJ colours. AGN in quiescent galaxies are dominated by spheroids, while star-forming hosts are split between bulges and disks. The UVJ diagram of AGN hosts is then used to set limits on the accretion density associated with evolved and star-forming systems. Most of the black hole growth since z~1 is associated with star-forming hosts. Nevertheless, ~15-20% of the X-ray luminosity density since z~1, is taking place in the quiescent region of the UVJ diagram. For the z~0.40 subsample, there is tentative evidence (2sigma significance), that AGN split by their UVJ colours differ in Eddington ratio. AGN in star-forming hosts dominate at high Eddington ratios, while AGN in quiescent hosts become increasingly important as a fraction of the total population toward low Eddington ratios. At higher redshift, z~0.8, such differences are significant at the 2sigma level only at Eddington ratios >1e-3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of SMBHs at the centres of galaxies. We compare our results with the GALFORM semi-analytic model, which postulates two black hole fuelling modes, the first linked to star-formation and the second occuring in passive galaxies. GALFORM predicts a larger fraction of black hole growth in quiescent galaxies at z<1, compared to the data. Relaxing the strong assumption of the model that passive AGN hosts have zero star-formation rate could reconcile this disagreement.
    Monthly Notices of the Royal Astronomical Society 02/2014; 440(1). DOI:10.1093/mnras/stu236 · 5.23 Impact Factor

Publication Stats

7k Citations
818.81 Total Impact Points

Institutions

  • 2002–2014
    • Complutense University of Madrid
      • Department of Atomic, Molecular and Nuclear Physics
      Madrid, Madrid, Spain
  • 2004–2010
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States
  • 2008
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2006–2008
    • Instituto de Estructura de la Materia
      Madrid, Madrid, Spain
    • California Institute of Technology
      • Spitzer Science Center
      Pasadena, California, United States