Pierre Falson

University of Lyon, Lyons, Rhône-Alpes, France

Are you Pierre Falson?

Claim your profile

Publications (63)258.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Na(+)/H(+) antiporters may recognize all alkali metal cations as substrates, but transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modelling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A 3D model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modelling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter, and that the cation selectivity can be modulated by repositioning a single local methyl group. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular Biology 02/2015; 427(8). DOI:10.1016/j.jmb.2015.02.012 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the growing interest in membrane proteins, their crystallization remains a major challenge. In the course of a crystallographic study on the multidrug ATP-binding cassette transporter BmrA, mass spectral analyses on samples purified with six selected detergents revealed unexpected protein contamination visible for the most part on overloaded SDS-PAGE. A major contamination from the outer membrane protein OmpF was detected in purifications with Foscholine 12 (FC12) but not with Lauryldimethylamine-N-oxide (LDAO) or any of the maltose-based detergents. Consequently, in the FC12 purified BmrA, OmpF easily crystallized over BmrA in a new space group, and whose structure is reported here. We therefore devised an optimized protocol to eliminate OmpF during the FC12 purification of BmrA. On the other hand, an additional band visible at ∼110 kDa was detected in all samples purified with the maltose-based detergents. It contained AcrB that crystallized over BmrA despite its trace amounts. Highly pure BmrA preparations could be obtained using either a ΔacrAB E. coli strain and n-dodecyl-β-D-maltopyranoside, or a classical E. coli strain and lauryl maltose neopentyl glycol for the overexpression and purification, respectively. Overall our results urge to incorporate a proteomics-based purity analysis into quality control checks prior to commencing crystallization assays of membrane proteins that are notoriously arduous to crystallize. Moreover, the strategies developed here to selectively eliminate obstinate contaminants should be applicable to the purification of other membrane proteins overexpressed in E. coli.
    PLoS ONE 12/2014; 9(12):e114864. DOI:10.1371/journal.pone.0114864 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments.
    07/2014; 1. DOI:10.3389/fmolb.2014.00005
  • Lorena Martinez, Pierre Falson
    03/2014; 2. DOI:10.3402/acmo.v2.23955
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human P-glycoprotein (P-gp) controls drugs bioavailability by pumping out of the cells many structurally-unrelated drugs. The x-ray structure of the mouse P-gp ortholog was solved with two SSS- and one RRR-enantiomers of the selenohexapeptide inhibitor QZ59, found within the putative drug-binding pocket of the membrane domain outer leaflet. This offered the first opportunity to localize the well-known H- and R- drug-substrate sites in light of QZ59 inhibition mechanisms that were characterized here in cellulo and modelled towards Hoechst 33342 and daunorubicin transport. We found that QZ59-SSS competes efficiently with both substrates, displaying KI ,app values of 0.15 and 0.3 µM, respectively 13 and 2 times lower than corresponding Km,app . In contrast, QZ59-RRR non-competitively inhibited daunorubicin transport with moderate efficacy (KI ,app = 1.9 µM) and displayed a mixed-type inhibition towards Hoechst 33342 transport, resulting from a mainly non-competitive (Ki2,app = 1.6 µM) and a poor but significant competitive tendency (Ki1,app = 5 µM). These results suppose a positional overlap of QZ59 - drug-transport sites, total for the SSS enantiomer and partial for the RRR one. Crystal structures analysis suggests that the H site overlaps both QZ59-SSS locations while the R-site overlaps the most embedded one. This article is protected by copyright. All rights reserved.
    FEBS Journal 11/2013; DOI:10.1111/febs.12613 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATP-Binding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse P-gp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.
    Proceedings of the National Academy of Sciences 07/2013; DOI:10.1073/pnas.1309275110 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-peptidomimetic drug-like protease inhibitors have potential for circumventing drug resistance. We developed a much-improved synthetic route to our previously reported inhibitor candidate displaying an unusual quaternized hemi-aminal. This functional group forms from a linear precursor upon passage into physiological media. Seven variants were prepared and tested in cellulo with our HIV-1 fusion-protein technology that result in an eGFP-based fluorescent readout. Three candidates showed inhibition potency above 20μM and toxicity at higher concentrations, making them attractive targets for further refinement. Importantly, our class of original inhibitor candidates is not recognized by two major multidrug resistance pumps, quite in contrast to most clinically applied HIV-1 protease inhibitors.
    Bioorganic & medicinal chemistry 06/2013; 21(17). DOI:10.1016/j.bmc.2013.06.018 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The Multidrug Resistance Protein ABCC11/MRP8 is expressed in physiological barriers and tumor breast tissues in which it secretes various substrates including cGMP (cyclic guanosine monophosphate) and 5FdUMP (5-fluoro-2[prime]-deoxyuridine-5[prime]-monophosphate), the active metabolite of the anticancer drug 5-FluoroUracil (frequently included to anticancer therapy).Previously, we described that ABCC11 high levels are associated to the estrogen receptor (ER) expression level in breast tumors and in cell lines resistant to tamoxifen. Consequently, by lowering the intracellular concentration of anticancer drugs, ABCC11 likely promotes a multidrug resistance (MDR) phenotype and decreases efficiency of anticancer therapy of 5FdUMP. Since no experimental data about binding sites of ABCC11 substrate are available, we decided to in silico localize putative substrate interaction sites of the nucleotide derivatives. Taking advantage of molecular dynamics simulation, we also analysed their evolution under computational physiological conditions and during the time. RESULTS: Since ABCC11 crystal structure is not resolved yet, we used the X-ray structures of the mouse mdr3 (homologous to human ABCB1) and of the bacterial homolog Sav1866 to generate two independent ABCC11 homology models in inward- and outward-facing conformations. Based on docking analyses, two putative binding pockets, for cGMP and 5FdUMP, were localized in both inward- and outward-facing conformations. Furthermore, based on our 3D models, and available biochemical data from homologous transporters, we identified several residues, potentially critical in ABCC11 transport function. Additionally, molecular dynamics simulation on our inward-facing model revealed for the first time conformation changes assumed to occur during transport process. CONCLUSIONS: ABCC11 would present two binding sites for cGMP and for 5FdUMP. Substrates likely first bind at the intracellular side of the transmembrane segment while ABCC11 is open forward the cytoplasm (inward-facing conformation). Then, along with conformational changes, it would pass through ABCC11 and fix the second site (close to the extracellular side), until the protein open itself to the extracellular space and allow substrate release.
    BMC Structural Biology 05/2013; 13(1):7. DOI:10.1186/1472-6807-13-7 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP-Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors-cytotoxic combination requires quantitative drug-disease models. A proof-of-concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic-Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per μmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in-vivo.
    Fundamental and Clinical Pharmacology 02/2013; DOI:10.1111/fcp.12005 · 2.08 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efflux transporters play an important role in drug absorption and also in multidrug resistance. ABCG2 (BCRP) is an efflux transporter conferring cross-resistance to mitoxantrone (Mit), irinotecan (CPT11), and its active metabolite SN38. MBLI87, a new ABCG2 inhibitor has proven its efficacy against ABCG2-mediated efflux in vitro and in vivo. This work aimed at modeling and quantifying the cellular interaction between MBLI87 and different substrates using a mechanistic template model. An in vitro competition experiment study was carried out with HEK293 cells overexpressing ABCG2 exposed to fixed concentrations of substrates (Mit, CPT11, SN38) and to MBLI87 at several concentration levels. A nonlinear mixed-effects transport inhibition model was developed to fit intracellular drug concentrations. In this model, drugs cross the cell membrane through passive diffusion, active drug efflux is ABCG2 mediated, interaction between substrates and inhibitor occurs within the transporter. The interaction was found to be noncompetitive. The MBLI87 Ki was estimated to 141 nm for Mit, 289 nm for CPT11, and 1160 nm for SN38. The ratio of intrinsic transport clearance divided by diffusion clearance was estimated to 2.5 for Mit, 1.01 for CPT11, and 5.4 for SN38. The maximal increase in the intracellular substrate concentration that is possible to achieve by inhibition of the transporter was estimated to 1.5 for Mit, 0.1 for CPT11, and 4.4 for SN38. This mechanistic template model describes both drug accumulation and cellular transport, and the mixed-effects approach allows an estimation of intra- and interassay variability. This model is of great interest to study cytotoxic cellular pharmacokinetics.
    Fundamental and Clinical Pharmacology 06/2012; 27(5). DOI:10.1111/j.1472-8206.2012.01054.x · 2.08 Impact Factor
  • Cancer Research 06/2012; 72(8 Supplement):3972-3972. DOI:10.1158/1538-7445.AM2012-3972 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance has become a serious concern in the treatment of bacterial infections. A prominent role is ascribed to the active efflux of xenobiotics out of the bacteria by a tripartite protein machinery. The mechanism of drug extrusion is rather well understood, thanks to the X-ray structures obtained for the Escherichia coli TolC/AcrA/AcrB model system and the related Pseudomonas aeruginosa OprM/MexA/MexB. However, many questions remain unresolved, in particular the stoichiometry of the efflux pump assembly. On the basis of blue native polyacrylamide gel electrophoresis (BN-PAGE) (Wittig et al., Nat. Protoc. 2006, 1, 418-428), we analyzed the binding stoichiometry of both palmitylated and non-palmitylated MexA with the cognate partner OprM trimer at different ratios and detergent conditions. We found that β-octyl glucopyranoside (β-OG) detergent was not suitable for this technique. Then we proved that MexA has to be palmitylated in order to stabilized the complex formation with OprM. Finally, we provided evidence for a two by two (2, 4, 6, or upper) binding of palmitylated MexA per trimer of OprM.
    Electrophoresis 04/2012; 33(8):1282-7. DOI:10.1002/elps.201100541 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ABCG2 multidrug transporter is known to confer cancer cell multidrug resistance by causing the efflux of anticancer drugs; therefore, selective inhibitors have the potential to improve chemotherapeutic treatments. Here, various methoxy derivatives of resveratrol are shown to be potent inhibitors of mitoxantrone efflux by ABCG2: among a series of 11 derivatives, compound 9 (3,5,3',4'-tetramethoxy trans-stilbene) had an IC(50) of 0.16 μM and showed a maximal inhibition of 75%, as measured by flow cytometry. It was not transported, as shown by HPLC fractionation and mass spectrometry titration and the lack of any cross-resistance in cell survival experiments. Compound 9 had a very low intrinsic cytotoxicity and was able to chemosensitize the growth of resistant ABCG2-transfected HEK293 cells at submicromolar concentrations. Drug-efflux inhibition was specific for ABCG2 since very low effects were observed with ABCB1 and ABCC1. The action mechanism of compound 9 was different from that of GF120918, which produced a complete and partly competitive but not ABCG2-specific inhibition, since ABCB1 was even more strongly inhibited. The two inhibitors also displayed different effects on the ABCG2 vanadate-sensitive ATPase activity, suggesting that they either bound to distinct sites or induced different conformational changes. Mitoxantrone efflux was fully inhibited by combining low concentrations of compound 9 with either GF120918 or a transport substrate such as prazosin or nilotinib. We conclude that methoxy derivatives of stilbene are good candidates for investigating future in vivo modulation of ABCG2 drug-efflux activity.
    ACS Chemical Biology 02/2012; 7(2):322-30. DOI:10.1021/cb200435y · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review describes the breast cancer resistance protein ABCG2 through its structure, functional roles and involvement in cell multidrug resistance, especially in cancer cells resistance to chemotherapeutics. The different types of known inhibitors are described, some being non-selective, since they also bind to other targets, and others being quite specific such as flavonoids. The different classes of active flavonoids and other polyphenols are described, some as plant natural compounds, but most of them being prepared and derivatized through medicinal chemistry. Quantitative structure-activity relationships of the ability of flavones, chalcones, xanthones, acridones and various benzopyrane/benzofurane derivatives to inhibit ABCG2-mediated drug efflux have led to pharmacophores and molecular models allowing to optimize the available hit compounds and to design new-generation lead compounds. Interestingly, inhibitory flavonoids are quite specific for ABCG2 versus ABCB1 and ABCC1, and appear either non-competitive or partially competitive towards mitoxantrone efflux. Most compounds do not inhibit ATPase activity, and are assumed not to be transported themselves by the transporter. Some acridones, firstly optimized in vitro as potent inhibitors, are indeed efficient in vivo, against human xenografts in SCID mice, more efficiently than gefitinib taken as a control. Future developments should open the way to more efficient/targeted modulators including (i) the potential interest of bimodulation by combining two different inhibitors, (ii) computer-assisted ligand-based drug design for getting more potent and more specific inhibitors, (iii) structure-based drug design from ABCG2 molecular models allowing in silico screening and docking of new inhibitors.
    Current Medicinal Chemistry 08/2011; 18(22):3387-401. DOI:10.2174/092986711796504736 · 3.72 Impact Factor
  • Cancer Research 07/2011; 71(8 Supplement):5467-5467. DOI:10.1158/1538-7445.AM2011-5467 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human multidrug resistance ABC transporters are ubiquitous membrane proteins responsible for the efflux of multiple, endogenous or exogenous, compounds out of the cells, and therefore they are involved in multi-drug resistance phenotype (MDR). They thus deeply impact the pharmacokinetic parameters and toxicity properties of drugs. A great pressure to develop inhibitors of these pumps is carried out, by either ligand-based drug design or (more ideally) structure-based drug design. In that goal, many biochemical studies have been carried out to characterize their transport functions, and many efforts have been spent to get high-resolution structures. Currently, beside the 3D-structures of bacterial ABC transporters Sav1866 and MsbA, only the mouse ABCB1 complete structure has been published at high-resolution, illustrating the tremendous difficulty in getting such information, taking into account that the human genome accounts for 48 ABC transporters encoding genes. Homology modeling is consequently a reasonable approach to overcome this obstacle. The present review describes, in the first part, the different approaches which have been published to set up human ABC pump 3D-homology models allowing the localization of binding sites for drug candidates, and the identification of critical residues therein. In a second part, the review proposes a more accurate strategy and practical keys to use such biological tools for initiating structure-based drug design.
    Current Drug Metabolism 04/2011; 12(3):268-77. DOI:10.2174/138920011795101804 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. Anionic calix[4]arene based detergents (C4Cn, n=1-12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may contribute to the membrane protein crystallization field.
    PLoS ONE 03/2011; 6(3):e18036. DOI:10.1371/journal.pone.0018036 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The breast cancer resistance protein ABCG2 confers cellular resistance to irinotecan (CPT-11) and its active metabolite SN-38. We utilised ABCG2-expressing xenografts as a model to evaluate the ability of a non-toxic ABCG2 inhibitor to increase intracellular drug accumulation. We assessed the activity of irinotecan in vivo in SCID mice: irinotecan completely inhibited the development of control pcDNA3.1 xenografts, whilst only delaying the growth of ABCG2-expressing xenografts. Addition of MBLI-87, an acridone derivative inhibitor, significantly increased the irinotecan effect against the growth of ABCG2-expressing xenografts. In vitro, MBLI-87 was as potent as GF120918 against ABCG2-mediated irinotecan efflux, and additionally was specific for ABCG2. A significant sensitisation to irinotecan was achieved despite the fact that doses remained well below the maximum tolerated dose (due to the rather limited solubility of MBLI-87). This suggested that MBLI-87 is an excellent candidate to prevent drug efflux by ABCG2, without altering plasma concentrations of irinotecan and SN-38 after IP (intra-peritoneal) injections. This could constitute a useful strategy to improve drug pharmacology, to facilitate drug penetration into normal tissue compartments protected by ABCG2, and potentially to reverse drug resistance in cancer cells.
    European journal of cancer (Oxford, England: 1990) 03/2011; 47(4):640-8. DOI:10.1016/j.ejca.2010.11.019 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABCG2 is a human membrane ATP-binding cassette half-transporter that hydrolyzes ATP to efflux a large number of chemotherapeutic agents. Several oligomeric states of ABCG2 from homodimers to dodecamers have been reported depending on the overexpression systems and/or the protocols used for purification. Here, we compared the oligomeric state of His(6)-ABCG2 expressed in Sf9 insect cells and in human Flp-In-293/ABCG2 cells after solubilization in mild detergents. His(6)-ABCG2 was purified through a new approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipid. This approach allowed the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages. ABCG2 purified onto the NiNTA lipid surfaces were directly analyzed by electron microscopy and by biochemical assays. Altogether, our data are consistent with a tetrameric organization of ABCG2 when expressed in either heterologous Sf9 insect cells or in human homologous cells.
    Biochimica et Biophysica Acta 11/2010; 1798(11):2094-101. DOI:10.1016/j.bbamem.2010.07.034 · 4.66 Impact Factor

Publication Stats

839 Citations
258.27 Total Impact Points


  • 2010–2014
    • University of Lyon
      Lyons, Rhône-Alpes, France
  • 1997–2013
    • French National Centre for Scientific Research
      • • Institute of Biology and Chemistry of Proteins
      • • Institut de Chimie des Substances Naturelles
      Lutetia Parisorum, Île-de-France, France
    • Aarhus University
      Aarhus, Central Jutland, Denmark
  • 1987–2012
    • Claude Bernard University Lyon 1
      • Institut de biologie et chimie des protéines (IBCP)
      Villeurbanne, Rhône-Alpes, France
  • 2006
    • Atomic Energy and Alternative Energies Commission
      Fontenay, Île-de-France, France
  • 2004
    • Université Paris-Sud 11
      Orsay, Île-de-France, France
  • 2002
    • Cea Leti
      Grenoble, Rhône-Alpes, France
  • 1993
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 1991
    • Catholic University of Louvain
      Walloon Region, Belgium