P Falson

Claude Bernard University Lyon 1, Villeurbanne, Rhône-Alpes, France

Are you P Falson?

Claim your profile

Publications (40)164.41 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multidrug resistance has become a serious concern in the treatment of bacterial infections. A prominent role is ascribed to the active efflux of xenobiotics out of the bacteria by a tripartite protein machinery. The mechanism of drug extrusion is rather well understood, thanks to the X-ray structures obtained for the Escherichia coli TolC/AcrA/AcrB model system and the related Pseudomonas aeruginosa OprM/MexA/MexB. However, many questions remain unresolved, in particular the stoichiometry of the efflux pump assembly. On the basis of blue native polyacrylamide gel electrophoresis (BN-PAGE) (Wittig et al., Nat. Protoc. 2006, 1, 418-428), we analyzed the binding stoichiometry of both palmitylated and non-palmitylated MexA with the cognate partner OprM trimer at different ratios and detergent conditions. We found that β-octyl glucopyranoside (β-OG) detergent was not suitable for this technique. Then we proved that MexA has to be palmitylated in order to stabilized the complex formation with OprM. Finally, we provided evidence for a two by two (2, 4, 6, or upper) binding of palmitylated MexA per trimer of OprM.
    Electrophoresis 04/2012; 33(8):1282-7. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth of yeast strains, either deleted for the vacuolar ABC transporter Ycf1 or deleted for the plasma membrane ABC transporter Yor1p or overexpressing Yor1p, were compared for their sensitivity to cadmium. On solid medium cell death (or growth inhibition) was observed at cadmium concentrations higher than 100 microM when yeasts were grown at 30 degrees C for 24 h. However, for all tested strains cell death (or growth inhibition) was already observed at 40 microM cadmium when incubated at 23 degrees C for 60 h. Thus cadmium is more toxic to yeast at 23 degrees C than at 30 degrees C. At 23 degrees C, the Deltayor1 strain grew more slowly than the wild-type strain and the double Deltayor1, Deltaycf1 deleted strain was much more sensitive to cadmium than each single Deltayor1 or Deltaycf1 deletant. Overexpression of Yor1p in a Deltaycf1 strain restores full growth. Cadmium uptake measurements show that Deltaycf1 yeast strains expressing or overexpressing Yor1p store less cadmium than the corresponding Deltaycf1, Deltayor1 strain. The strains expressing Yor1p display an energy-dependent efflux of cadmium estimated for the yeast overexpressing Yor1p to be about 0.02 nmol 109Cd/mg protein/min. Yeast cells loaded with radiolabeled glutathione and then with radioactive cadmium displayed a twice-higher efflux of glutathione than that of cadmium suggesting that Yor1p transports both compounds as a bis-glutathionato-cadmium complex. All together, these results suggest that in addition to being accumulated in the yeast vacuole by Ycf1p, cadmium is also effluxed out of the cell by Yor1p.
    Biochimie 12/2006; 88(11):1665-71. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By analyzing, after expression in yeast and purification, the intrinsic fluorescence properties of point mutants of rabbit Ca(2+)-ATPase (SERCA1a) with alterations to amino acid residues in Ca(2+)-binding site I (E(771)), site II (E(309)), in both sites (D(800)), or in the nucleotide-binding domain (W(552)), we were able to follow the conformational changes associated with various steps in the ATPase catalytic cycle. Whereas Ca(2+) binding to purified wild-type (WT) ATPase in the absence of ATP leads to the rise in Trp fluorescence expected for the so-called E2 --> E1Ca(2) transition, the Ca(2+)-induced fluorescence rise is dramatically reduced for the E(309)Q mutant. As this purified E(309)Q mutant retains the ability to bind Ca(2+) at site I (but not at site II), we tentatively conclude that the protein reorganization induced by Ca(2+) binding at site II makes the major contribution to the overall Trp fluorescence changes observed upon Ca(2+) binding to both sites. Judging from the fluorescence response of W(552)F, similar to that of WT, these changes appear to be primarily due to membranous tryptophans, not to W(552). The same holds for the fluorescence rise observed upon phosphorylation from P(i) (the so-called E2 --> E2P transition). As for WT ATPase, Mg(2+) binding in the absence of Ca(2+) affects the fluorescence of the E(309)Q mutant, suggesting that this Mg(2+)-dependent fluorescence rise does not reflect binding of Mg(2+) to Ca(2+) sites; instead, Mg(2+) probably binds close to the catalytic site, or perhaps near transmembrane span M3, at a location recently revealed by Fe(2+)-catalyzed oxidative cleavage. Mutation of W(552) hardly affects ATP-induced fluorescence changes in the absence of Ca(2+), which are therefore mostly due to membranous Trp residues, demonstrating long-range communication between the nucleotide-binding domain and the membranous domain.
    Biochemistry 05/2006; 45(16):5261-70. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: F1-ATPase, the catalytic sector of Fo-F1 ATPases-ATPsynthases, displays an apparent negative cooperativity for ATP hydrolysis at high ATP concentrations which involves noncatalytic and catalytic nucleotide binding sites. The molecular mechanism of such cooperativity is currently unknown. To get further insights, we have investigated the structural consequences of the single mutation of two residues: Q173L in the alpha-subunit and Q170Y in the beta-subunit of the F1-ATPase of the yeast Schizosaccharomyces pombe. These residues are localized in or near the Walker-A motifs of each subunit and their mutation produces an opposite effect on the negative cooperativity. The betaQ170 residue (M167 in beef heart) is located close to the binding site for the phosphate-Mg moiety of the nucleotide. Its replacement by tyrosine converts this site into a close state with increased affinity for the bound nucleotide and leads to an increase of negative cooperativity. In contrast, the alphaQ173L mutation (Q172 in beef heart) abolishes negative cooperativity due to the loss of two H-bonds: one stabilizing the nucleotide bound to the noncatalytic site and the other linking alphaQ173 to the adjacent betaT354, localized at the alpha(DP)-beta(TP) interface. The properties of these mutants suggest that negative cooperativity occurs through interactions between neighbor alpha- and beta-subunits. Indeed, in the beef heart enzyme, (i) the alpha(DP)-beta(TP) interface is stabilized by a vicinal alphaR171-betaD352 salt bridge (ii) betaD352 and betaT354 belong to a short peptidic stretch close to betaY345, the aromatic group of which interacts with the adenine moiety of the nucleotide bound to the catalytic site. We therefore propose that the betaY345-betaT354 stretch (beef heart numbering) constitutes a short link that drives structural modifications from a noncatalytic site to the neighbor catalytic site in which, as a result, the affinity for ADP is modulated.
    Biochimica et Biophysica Acta 08/2004; 1658(1-2):133-40. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we have investigated a new and general method for the reconstitution of membrane proteins into giant unilamellar vesicles (GUVs). We have analyzed systematically the reconstitution of two radically different membrane proteins, the sarcoplasmic reticulum Ca(2+)-ATPase and the H(+) pump bacteriorhodopsin. In a first step, our method involved a detergent-mediated reconstitution of solubilized membrane proteins into proteoliposomes of 0.1-0.2 microm in size. In a second step, these preformed proteoliposomes were partially dried under controlled humidity followed, in a third step, by electroswelling of the partially dried film to give GUVs. The physical characteristics of GUVs were analyzed in terms of morphology, size, and lamellarity using phase-contrast and differential interference contrast microscopy. The reconstitution process was further characterized by analyzing protein incorporation and biological activity. Both membrane proteins could be homogeneously incorporated into GUVs at lipid/protein ratios ranging from 5 to 40 (w/w). After reconstitution, both proteins retained their biological activity as demonstrated by H(+) or Ca(2+) pumping driven by bacteriorhodopsin or Ca(2+)-ATPase, respectively. This constitutes an efficient new method of reconstitution, leading to the production of large unilamellar membrane protein-containing vesicles of more than 20 microm in diameter, which should prove useful for functional and structural studies through the use of optical microscopy, optical tweezers, microelectrodes, or atomic force microscopy.
    Biophysical Journal 08/2004; 87(1):419-29. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wild-type (WT) and the double mutant D813A,D818A (ADA) of the L6-7 loop of SERCA1a were expressed in yeast, purified, and reconstituted into lipids. This allowed us to functionally study these ATPases by both kinetic and spectroscopic means, and to solve previous discrepancies in the published literature about both experimental facts and interpretation concerning the role of this loop in P-type ATPases. We show that in a solubilized state, the ADA mutant experiences a dramatic decrease of its calcium-dependent ATPase activity. On the contrary, reconstituted in a lipid environment, it displays an almost unaltered maximal calcium-dependent ATPase activity at high (millimolar) ATP, with an apparent affinity for Ca(2+) altered only moderately (3-fold). In the absence of ATP, the true affinity of ADA for Ca(2+) is, however, more significantly reduced (20-30-fold) compared with WT, as judged from intrinsic (Trp) or extrinsic (fluorescence isothiocyanate) fluorescence experiments. At low ATP, transient kinetics experiments reveal an overshoot in the ADA phosphorylation level primarily arising from the slowing down of the transition between the nonphosphorylated "E2" and "Ca(2)E1" forms of ADA. At high ATP, this slowing down is only partially compensated for, as ADA turnover remains more sensitive to orthovanadate than WT turnover. ADA ATPase also proved to have a reduced affinity for ATP in studies performed under equilibrium conditions in the absence of Ca(2+), highlighting the long range interactions between L6-7 and the nucleotide-binding site. We propose that these mutations in L6-7 could affect protonation-dependent winding and unwinding events in the nearby M6 transmembrane segment.
    Journal of Biological Chemistry 08/2004; 279(31):32125-33. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By measuring the phosphorylation levels of individual proteolytic fragments of SERCA1a separated by electrophoresis after their phosphorylation, we were able to study the catalytic properties of a p95C-p14N complex arising from SERCA1a cleavage by proteinase K between Leu(119) and Lys(120), in the loop linking the A-domain with the second transmembrane segment. ATP hydrolysis by the complex was very strongly inhibited, although ATP-dependent phosphorylation and the conversion of the ADP-sensitive E1P form to E2P still occurred at appreciable rates. However, the rate of subsequent dephosphorylation of E2P was inhibited to a dramatic extent, and this was also the case for the rate of "backdoor" formation of E2P from E2 and P(i). E2P formation from E2 at equilibrium nevertheless indicated little change in the apparent affinity for P(i) or Mg(2+), while binding of orthovanadate was weaker. The p95C-p14N complex also had a slightly reduced affinity for Ca(2+) and exhibited a reduced rate for its Ca(2+)-dependent transition from E2 to Ca(2)E1. Thus, disruption of the N-terminal link of the A-domain with the transmembrane region seems to shift the conformational equilibria of Ca(2+)-ATPase from the E1/E1P toward the E2/E2P states and to increase the activation energy for dephosphorylation of Ca(2+)-ATPase, reviving the old idea of the A-domain being a phosphatase domain as part of the transduction machinery.
    Journal of Biological Chemistry 04/2004; 279(10):9156-66. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmembrane (TM) peptides often induce toxic effects when expressed in bacteria, probably due to membrane destabilization. We report here that in the case of the TM domains of hepatitis C virus (HCV) E1 and E2 envelope proteins, which are both particularly toxic for the bacteria, the insertion of the Asp-Pro (DP) sequence dramatically reduced their toxicities and promoted their expressions when produced as glutathione S-transferase (GST) GST-DP-TM chimeras. Subcellular fractionation showed that these chimeras co-sediment with the membrane fraction and contain active GST that could be solubilized with a mild detergent. Surprisingly, immuno-gold electron microscopy clearly showed that such chimeras are not localized in the membrane but in the cytosol. We thus postulate that they likely form proteo-lipidic aggregates, which prevent the bacteria from toxicity by sequestering the TM part of the chimeras. The reduction of toxicity in the presence of the Asp-Pro sequence is possibly due to Asp's negative charge that probably disadvantages the binding of the TM peptides to the membrane. In addition, the structural features of Pro residue could promote the formation of chimera aggregates.
    Biochimica et Biophysica Acta 02/2004; 1660(1-2):53-65. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have found that despite a markedly low calcium affinity the D813A/D818A mutant is capable, after complexation with Cr.ATP, of occluding Ca(2+) to the same extent (1-2 Ca(2+) per ATPase monomer) as wild- type ATPase. The inherent ability of the synthetic L6-7 loop peptide to bind Ca(2+) was demonstrated with murexide and mass spectrometry. NMR analysis indicated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum with coordination by all three aspartate residues D813/D815/D818 that resulted in an altered conformation of the peptide chain. Overall our observations suggest that, in addition to mediating contact between the intramembranous Ca(2+) binding sites and the cytosolic phosphorylation site as previously suggested, the L6-7 loop, in a preceding step, participates in the formation of an entrance port important for lodging Ca(2+) at a high-affinity binding site inside the membrane.
    Annals of the New York Academy of Sciences 05/2003; 986:90-5. · 4.38 Impact Factor
  • Source
    Annals of the New York Academy of Sciences 05/2003; 986:312-4. · 4.38 Impact Factor
  • Annals of the New York Academy of Sciences 05/2003; 986:333-4. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.
    Journal of Biological Chemistry 05/2002; 277(15):13016-28. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large amounts of heterologous C-terminally his-tagged SERCA1a Ca(2+)-ATPase were expressed in yeast using a galactose-regulated promoter and purified by Ni(2+) affinity chromatography followed by Reactive red chromatography. Optimizing the number of galactose inductions and increasing the amount of Gal4p transcription factor improved expression. Lowering the temperature from 28 degrees C to 18 degrees C during expression enhanced the recovery of solubilized and active Ca(2+)-ATPase. In these conditions, a 4 l yeast culture produced 100 mg of Ca(2+)-ATPase, 60 and 22 mg being pelleted with the heavy and light membrane fractions respectively, representing 7 and 1.7% of total proteins. The Ca(2+)-ATPase expressed in light membranes was 100% solubilized with L-alpha-lysophosphatidylcholine (LPC), 50% with n-dodecyl beta-D-maltoside (DM) and 25% with octaethylene glycol mono-n-dodecyl ether (C(12)E(8)). Compared to LPC, DM preserved specific activity of the solubilized Ca(2+)-ATPase during the chromatographic steps. Starting from 1/6 (3.8 mg) of the total amount of Ca(2+)-ATPase expressed in light membranes, 800 microg could be routinely purified to 50% purity by metal affinity chromatography and then 200 microg to 70% with Reactive red chromatography. The purified Ca(2+)-ATPase displayed the same K(m) for calcium and ATP as the native enzyme but a reduced specific activity ranging from 4.5 to 7.3 micromol ATP hydrolyzed/min/mg Ca(2+)-ATPase. It was stable and active for several days at 4 degrees C or after removal of DM with Bio-beads and storage at -80 degrees C.
    Biochimica et Biophysica Acta 03/2002; 1560(1-2):67-83. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca(2+) accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis.
    The Journal of Cell Biology 07/2001; 153(6):1301-14. · 10.82 Impact Factor
  • Analytical Biochemistry 11/2000; 285(2):276-8. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used the Hepatitis B Virus DNA genome as a probe to identify genes clonally mutated in vivo, in human liver cancers. In a tumor, HBV-DNA was found to be integrated into the gene encoding Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA), which pumps calcium, an important intracellular messenger for cell viability and growth, from the cytosol to the endoplasmic reticulum. The HBV X gene promoter cis-activates chimeric HBV X/SERCA1 transcripts, with splicing of SERCA1 exon 11, encoding C-terminally truncated SERCA1 proteins. Two chimeric HBV X/SERCA1 proteins accumulate in the tumor and form dimers. In vitro analyses have demonstrated that these proteins localize to the ER, determine its calcium depletion and induce cell death. We have also shown that these biological effects are related to expression of the SERCA, rather than of the viral moiety. This report involves for the first time the expression of mutated SERCA proteins in vivo in a tumor cell proliferation and in vitro in the control of cell viability. Oncogene (2000).
    Oncogene 07/2000; 19(25):2877-86. · 8.56 Impact Factor
  • Biochemical Society Transactions 01/2000; 27(6):917-23. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a method for estimating ligand binding to a macromolecular sample under conditions where this binding is of low affinity and must be measured under equilibrium conditions, without removal of the unbound ligand. The method is based on centrifugal ultrafiltration through a membrane with a molecular mass cut-off intermediate between that of the ligand and that of the target, and the amount of bound ligand is calculated from the difference between the (total) ligand in the concentrated sample and the (free) ligand in the ultrafiltrate. Centrifugal ultrafiltration makes it possible to separate free ligand from bound ligand (without changing its concentration) and to simultaneously concentrate the target (such that the proportion of bound ligand becomes significant, even under low-affinity binding conditions). We applied this technique, using Centricon 10 (Amicon) devices, to several cases (soluble proteins, intact membranes, detergent-solubilized proteins, and pure detergent micelles) and assessed its value with respect to the common artifacts that occur in other protocols involving protein retention on nitrocellulose filters (nonspecific ligand adsorption and protein denaturation).
    Analytical Biochemistry 12/1998; 264(2):141-8. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During active cation transport, sarcoplasmic reticulum Ca2+-ATPase, like other P-type ATPases, undergoes major conformational changes, some of which are dependent on Ca2+ binding to high affinity transport sites. We here report that, in addition to previously described residues of the transmembrane region (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476–478), the region located in the cytosolic L6–7 loop connecting transmembrane segments M6 and M7 has a definite influence on the sensitivity of the Ca2+-ATPase to Ca2+, i.e. on the affinity of the ATPase for Ca2+. Cluster mutation of aspartic residues in this loop results in a strong reduction of the affinity for Ca2+, as shown by the Ca2+dependence of ATPase phosphorylation from either ATP or Pi. The reduction in Ca2+ affinity for phosphorylation from Pi is observed both at acidic and neutral pH, suggesting that these mutations interfere with binding of the first Ca2+, as proposed for some of the intramembranous residues essential for Ca2+ binding (Andersen, J. P. (1995)Biosci. Rep. 15, 243–261). Treatment of the mutated Ca2+-ATPase with proteinase K, in the absence or presence of various Ca2+ concentrations, leads to Ca2+-dependent changes in the proteolytic degradation pattern similar to those in the wild type but observed only at higher Ca2+ concentrations. This implies that these effects are not due to changes in the conformational state of Ca2+-free ATPase but that changes affecting the proteolytic digestion pattern require higher Ca2+ concentrations. We conclude that aspartic residues in the L6–7 loop might interact with Ca2+ during the initial steps of Ca2+binding.
    Journal of Biological Chemistry 08/1998; 273(32):20134-20143. · 4.65 Impact Factor

Publication Stats

443 Citations
164.41 Total Impact Points


  • 1986–2012
    • Claude Bernard University Lyon 1
      • Institut de biologie et chimie des protéines (IBCP)
      Villeurbanne, Rhône-Alpes, France
  • 2002–2006
    • Cea Leti
      Grenoble, Rhône-Alpes, France
  • 2004
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2002–2004
    • Atomic Energy and Alternative Energies Commission
      • Centre d'Etudes de Saclay
      Fontenay, Île-de-France, France
  • 1997
    • Aarhus University
      Aarhus, Central Jutland, Denmark
  • 1993–1996
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 1991
    • Catholic University of Louvain
      Walloon Region, Belgium