Oliver Brandau

Max Planck Institute of Biochemistry, München, Bavaria, Germany

Are you Oliver Brandau?

Claim your profile

Publications (24)233.53 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cell-selective adhesion molecule (ESAM) is specifically expressed at endothelial tight junctions and on platelets. To test whether ESAM is involved in leukocyte extravasation, we have generated mice carrying a disrupted ESAM gene and analyzed them in three different inflammation models. We found that recruitment of lymphocytes into inflamed skin was unaffected by the gene disruption. However, the migration of neutrophils into chemically inflamed peritoneum was inhibited by 70% at 2 h after stimulation, recovering at later time points. Analyzing neutrophil extravasation directly by intravital microscopy in the cremaster muscle revealed that leukocyte extravasation was reduced (50%) in ESAM(-/-) mice without affecting leukocyte rolling and adhesion. Depletion of >98% of circulating platelets did not abolish the ESAM deficiency-related inhibitory effect on neutrophil extravasation, indicating that it is only ESAM at endothelial tight junctions that is relevant for the extravasation process. Knocking down ESAM expression in endothelial cells resulted in reduced levels of activated Rho, a GTPase implicated in the destabilization of tight junctions. Indeed, vascular permeability stimulated by vascular endothelial growth factor was reduced in ESAM(-/-) mice. Collectively, ESAM at endothelial tight junctions participates in the migration of neutrophils through the vessel wall, possibly by influencing endothelial cell contacts.
    Journal of Experimental Medicine 08/2006; 203(7):1671-7. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tenomodulin (Tnmd) is a member of a new family of type II transmembrane glycoproteins. It is predominantly expressed in tendons, ligaments, and eyes, whereas the only other family member, chondromodulin I (ChM-I), is highly expressed in cartilage and at lower levels in the eye and thymus. The C-terminal extracellular domains of both proteins were shown to modulate endothelial-cell proliferation and tube formation in vitro and in vivo. We analyzed Tnmd function in vivo and provide evidence that Tnmd is processed in vivo and that the proteolytically cleaved C-terminal domain can be found in tendon extracts. Loss of Tnmd expression in gene targeted mice abated tenocyte proliferation and led to a reduced tenocyte density. The deposited amounts of extracellular matrix proteins, including collagen types I, II, III, and VI and decorin, lumican, aggrecan, and matrilin-2, were not affected, but the calibers of collagen fibrils varied significantly and exhibited increased maximal diameters. Tnmd-deficient mice did not have changes in tendon vessel density, and mice lacking both Tnmd and ChM-I had normal retinal vascularization and neovascularization after oxygen-induced retinopathy. These results suggest that Tnmd is a regulator of tenocyte proliferation and is involved in collagen fibril maturation but do not confirm an in vivo involvement of Tnmd in angiogenesis.
    Molecular and Cellular Biology 02/2005; 25(2):699-705. · 5.04 Impact Factor
  • O. Brandau, R. Fässler
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrins are dimeric cell-surface receptors whose extracellular domain can interact with extracellular matrix (ECM) molecules and cellular receptors, while the intracellular domain binds directly or indirectly to the actin cytoskeleton. Thus, integrins link the cytoskeleton to the ECM and occupy a central position in the regulation of many essential cell functions, such as cell-cell contacts, adhesion to the ECM, or migration. Dimerization of 18 α- and 8 β-integrin subunits results in at least 24 different heterodimers, with distinct ligand binding and signaling properties. The generation of mice deficient for specific integrin subunits has significantly contributed to our knowledge of integrin function in vivo. The analysis of recently generated conditional gene-targeted mice and knock-ins will allow researchers to investigate integrin subunits, which upon constitutive deletion show an embryonic lethal phenotype, and to dissect integrin signaling in vivo. In this review, the results of the analysis of mice deficient for specific integrins are discussed in the context of functional systems or organs of the mouse and compared with phenotypes of mice lacking known integrin ligands. KeywordsIntegrin–Knockout–Extracellular matrix
    12/2003: pages 193-225;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mouse TEN-M/ODZ proteins belong to a new family of type II transmembrane proteins with unknown function. The family consists of four members, which are expressed highly in brain and less in many other tissues. In the present study we have generated specific RNA probes and antibodies to characterize the expression of the 4 Ten-m/Odz genes in the developing and adult central nervous system (CNS) of mice. Ten-m/Odz3 and Ten-m/Odz4 mRNAs were first detectable at E7.5, Ten-m/Odz2 expression started at the 37 somite (E 10.5) stage, while Ten-m/Odz1 mRNA is not found before E15.5. In the adult mouse CNS mRNAs of the 4 Ten-m/Odzs were expressed in distinct patterns, which partially overlapped. Immunostaining and in situ hybridization localized proteins and mRNAs of Ten-m/Odzs in adjacent areas suggesting that TEN-M/ODZ proteins might be transported from the cell body along the axon or that they are shed from the cell surface and diffuse into distant regions.
    Gene Expression Patterns 09/2003; 3(4):397-405. · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A comprehensive screening was conducted for RP2 and retinitis pigmentosa GTPase regulator (RPGR) gene mutations including RPGR exon ORF15 in 58 index patients. The frequency of RPGR mutations was assessed in families with definite X-linked recessive disease (xlRP), and a strategy for analyzing the highly repetitive mutational hot spot in exon ORF15 is provided. Fifty-eight apparently unrelated index-patients were screened for mutations in all coding exons of the RP2 and the RPGR genes, including splice-sites, by single-strand conformation polymorphism (SSCP) analysis, except for RPGR exon ORF15. A strategy for directly sequencing the large repetitive stretch of exon ORF15 from a 1.6-kb PCR-product was developed. According to pedigree size and evidence for X linkage, families were subdivided into three categories. Screening of 58 xlRP families revealed RP2 mutations in 8% and RPGR mutations in 71% of families with definite X-linked inheritance. Mutations clustered within a approximately 500-bp stretch in exon ORF15. In-frame sequence alterations in exon ORF15 ranged from the deletion of 36 bp to the insertion of 75 bp. Mutations in the RPGR gene are estimated to cause 15% to 20% of all cases of RP, higher than any other single RP locus. This report provides a detailed strategy to analyze the mutational hot spot in RPGR exon ORF15, which cannot be screened by standard procedures. The discrepancy of the proportion of families linked to the RP3 locus and those having RPGR mutations is resolved in a subset of families with definite X linkage.
    Investigative Ophthalmology &amp Visual Science 05/2003; 44(4):1458-63. · 3.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.
    Experimental Cell Research 05/2003; 284(2):239-50. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondromodulin I (chm-I), a type II transmembrane protein, is highly expressed in the avascular zones of cartilage but is downregulated in the hypertrophic region, which is invaded by blood vessels during enchondral ossification. In vitro and in vivo assays with the purified protein have shown chondrocyte-modulating and angiogenesis-inhibiting functions. To investigate chm-I function in vivo, we generated transgenic mice lacking chm-I mRNA and protein. Null mice are viable and fertile and show no morphological changes. No abnormalities in vascular invasion and cartilage development were detectable. No evidence was found for a compensating function of tendin, a recently published homologue highly expressed in tendons and also, at low levels, in cartilage. Furthermore, no differences in the expression of other angiogenic or antiangiogenic factors such as transforming growth factor beta1 (TGF-beta1), TGF-beta2, TGF-beta3, fibroblast growth factor 2, and vascular endothelial growth factor were found. The surprising lack of phenotype in the chm-I-deficient mice suggests either a different function for chm-I in vivo than has been proposed or compensatory changes in uninvestigated angiogenic or angiogenesis-inhibiting factors. Further analysis using double-knockout technology will be necessary to analyze the function of chm-I in the complex process of enchondral ossification.
    Molecular and Cellular Biology 10/2002; 22(18):6627-35. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human chromosome Xp11.3–Xp11.23 encompasses the map location for a growing number of diseases with a genetic basis or genetic component. These include several eye disorders, syndromic and nonsyndromic forms of X-linked mental retardation (XLMR), X-linked neuromuscular diseases and susceptibility loci for schizophrenia, type 1 diabetes, and Graves' disease. We have constructed an ∼2.7-Mb high-resolution physical map extending from DXS8026 to ELK1, corresponding to a genetic distance of ∼5.5 cM. A combination of chromosome walking and sequence-tagged site (STS)-content mapping resulted in an integrated framework and transcript map, precisely positioning 10 polymorphic microsatellites (one of which is novel), 16 ESTs, and 12 known genes (RP2, PCTK1, UHX1, UBE1, RBM10, ZNF157, SYN1, ARAF1, TIMP1, PFC, ELK1, UXT). The composite map is currently anchored with 89 STSs to give an average resolution of ∼1 STS every 30 kb. By a combination of EST database searches and in silico detection of UniGene clusters within genomic sequence generated from this template map, we have mapped several novel genes within this interval: a Na+/H+ exchanger (SLC9A7), at least two zincfinger transcription factors (KIAA0215 and Hs.68318), carbohydrate sulfotransferase-7 (CHST7), regucalcin (RGN), inactivation-escape-1 (INE1), the human ortholog of mouse neuronal protein 15.6, and four putative novel genes. Further genomic analysis enabled annotation of the sequence interval with 20 predicted pseudogenes and 21 UniGene clusters of unknown function. The combined PAC/BAC transcript map and YAC scaffold presented here clarifies previously conflicting data for markers and genes within the Xp11.3–Xp11.23 interval and provides a powerful integrated resource for functional characterization of this clonally unstable, yet gene-rich and clinically significant region of proximal Xp.
    Genomics 06/2002; 79(6):891-891. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human chromosome Xp11.3-Xp11.23 encompasses the map location for a growing number of diseases with a genetic basis or genetic component. These include several eye disorders, syndromic and nonsyndromic forms of X-linked mental retardation (XLMR), X-linked neuromuscular diseases and susceptibility loci for schizophrenia, type 1 diabetes, and Graves' disease. We have constructed an approximately 2.7-Mb high-resolution physical map extending from DXS8026 to ELK1, corresponding to a genetic distance of approximately 5.5 cM. A combination of chromosome walking and sequence-tagged site (STS)-content mapping resulted in an integrated framework and transcript map, precisely positioning 10 polymorphic microsatellites (one of which is novel), 16 ESTs, and 12 known genes (RP2, PCTK1, UHX1, UBE1, RBM10, ZNF157, SYN1, ARAF1, TIMP1, PFC, ELK1, UXT). The composite map is currently anchored with 89 STSs to give an average resolution of approximately 1 STS every 30 kb. By a combination of EST database searches and in silico detection of UniGene clusters within genomic sequence generated from this template map, we have mapped several novel genes within this interval: a Na+/H+ exchanger (SLC9A7), at least two zincfinger transcription factors (KIAA0215 and Hs.68318), carbohydrate sulfotransferase-7 (CHST7), regucalcin (RGN), inactivation-escape-1 (INE1), the human ortholog of mouse neuronal protein 15.6, and four putative novel genes. Further genomic analysis enabled annotation of the sequence interval with 20 predicted pseudogenes and 21 UniGene clusters of unknown function. The combined PAC/BAC transcript map and YAC scaffold presented here clarifies previously conflicting data for markers and genes within the Xp11.3-Xp11.23 interval and provides a powerful integrated resource for functional characterization of this clonally unstable, yet gene-rich and clinically significant region of proximal Xp.
    Genomics 05/2002; 79(4):560-72. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Profilins are small, widely expressed actin binding proteins, thought to be key regulators of actin dynamics in living cells. So far, three profilin-genes have been described: profilin-I (PFN1), profilin-II (PFN2) with two splice variants and the recently identified profilin-III (PFN3). Here we describe the genomic organization of the genes encoding human and mouse profilin-III. Both are single exon genes and lie in close vicinity to the renal sodium-phosphate transport gene 2 (SLC34A1, NPT2) which is highly expressed in kidney. Northern hybridization to rat tissues has previously demonstrated expression of an approximately 4.5 kb long profilin-III mRNA transcript in kidney and a mRNA transcript of approximately 1 kb in length in testis. Here we show that mouse profilin-III expression is restricted to testis and that the 4.2 kb profilin-III mRNA in kidney is the result of a slc34a1 transcript which includes the antisense profilin-III open reading frame in its 3'-untranslated region. Finally, we demonstrate by in situ hybridization that profilin-III mRNA is localized to cells in the late stage of spermatogenesis.
    Gene 02/2002; 283(1-2):219-25. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondromodulin-I (CHM1) was identified recently as an angiogenesis inhibitor in cartilage. It is highly expressed in the avascular zones of cartilage but is absent in the late hypertrophic region, which is invaded by blood vessels during enchondral ossification. Blast searches with the C-terminal part of CHM1 in available databases led to the identification of human and mouse cDNAs encoding a new protein, Tendin, that shares high homology with CHM1. Based on computer predictions, Tendin is a type II transmembrane protein containing a putative proteinase cleavage and two glycosylation sites. Northern assays with mouse RNAs demonstrated strong expression of a 1.5-kb tendin transcript in the diaphragm, skeletal muscle, and the eye and low levels of expression in all other tissues investigated. In 17.5-day-old mouse embryos, in situ hybridization revealed high levels of tendin transcript in tendons and ligaments. Additional signals were detected in brain and spinal cord, liver, lung, bowels, thymus, and eye. Cartilage, where CHM1 is found, revealed low levels of tendin m-RNA. In adult mice, tendin is expressed in neurons of all brain regions and the spinal cord. The tendin gene is localized in the human Xq22 region, to which several human diseases have been mapped.
    Developmental Dynamics 06/2001; 221(1):72-80. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To achieve chondrocyte-specific deletion of floxed genes we generated a transgenic mouse line expressing the Cre recombinase under the control of the mouse type II collagen gene (Col2a1) regulatory regions. Northern and in situ hybridization analyses demonstrated the expression of the transgene (Col2a1-Cre) in cartilaginous tissues. To test the excision efficiency of Cre, the Col2a1-Cre strain was crossed with the ROSA26 reporter strain. LacZ staining of double transgenic mice revealed Cre activity in both chondrogenic and non-chondrogenic tissues. During early embryonic development (E9.5-11.5), LacZ expression was detected in tissues where the endogenous Col2a1 transcript is expressed such as the otic capsule, notochord, developing brain, sclerotome and mesenchymal condensations of future cartilage. At later stages, Cre activity was observed in all cartilaginous tissues with virtually 100% of chondrocytes being LacZ positive. These data suggest that the Col2a1-Cre mouse strain described here can be useful to achieve Cre-mediated recombination in Col2a1 expressing cells, especially in chondrocytes.
    Matrix Biology 02/2001; 19(8):761-7. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5-7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina.
    Nature Genetics 12/2000; 26(3):324-7. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked forms of mental retardation (MR) affect approximately 1 in 600 males and are likely to be highly heterogeneous. They can be categorized into syndromic (MRXS) and nonspecific (MRX) forms. In MRX forms, affected patients have no distinctive clinical or biochemical features. At least five MRX genes have been identified by positional cloning, but each accounts for only 0.5%-1.0% of MRX cases. Here we show that the gene TM4SF2 at Xp11.4 is inactivated by the X breakpoint of an X;2 balanced translocation in a patient with MR. Further investigation led to identification of TM4SF2 mutations in 2 of 33 other MRX families. RNA in situ hybridization showed that TM4SF2 is highly expressed in the central nervous system, including the cerebral cortex and hippocampus. TM4SF2 encodes a member of the tetraspanin family of proteins, which are known to contribute in molecular complexes including beta-1 integrins. We speculate that through this interaction, TM4SF2 might have a role in the control of neurite outgrowth.
    Nature Genetics 03/2000; 24(2):167-70. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present two male siblings suffering from recurrent manifestations of B-cell non-Hodgkin's lymphoma (NHL) and recurrent infections of the lower respiratory tract associated with bronchiectasis. Immunodeficiency could not be demonstrated by any laboratory investigation. In both patients, lymphomas developed without evidence for Epstein-Barr virus (EBV) infection, i.e. no antibody response to EBV-specific antigens, negative EBV-PCR (polymerase chain reaction) in peripheral blood cells, and absence of latent membrane protein (LMP) and EBV-encoded RNA (EBER) in lymphoma cells. Molecular analysis of the SH2D1A, the gene for X-linked lymphoproliferative disease (XLP) led to the identification of a deletion in the first exon in both patients. Therefore, we postulate that the genetic defect and the following dysregulation of the B-/T-cell interaction rendered these patients susceptible to the early onset of B-cell NHL and that EBV infection is not an obligate prerequisite.
    British Journal of Haematology 03/2000; 108(2):377-82. · 4.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency, which most often manifests itself after Epstein-Barr virus (EBV) infection. The main clinical phenotypes include fulminant or fatal infectious mononucleosis, dysgammaglobulinaemia and malignant lymphoma. We have recently cloned the SH2D1A gene, which has been shown to be mutated in approximately 70% of XLP patients. Now we report five novel SH2D1A mutations in patients from five unrelated XLP families. No mutations were found in another three XLP families. In three boys with early onset non-Hodgkin lymphoma (NHL) from two unrelated families a deletion of SH2D1A exon 1 and a splice site mutation were found, respectively. These patients did not show any laboratory or clinical signs of a previous EBV infection. A fourth EBV-uninfected and unrelated boy with a stop mutation in the SH2D1A gene shows only signs of dysgammaglobulinaemia. Development of dysgamma-globulinaemia and lymphoma without evidence of prior EBV infection in four of our patients suggests that EBV is unrelated to these phenotypes, in contrast to fulminant or fatal infectious mononucleosis. The role of SH2D1A as a putative tumour suppressor gene remains to be investigated.
    Human Molecular Genetics 01/2000; 8(13):2407-13. · 7.69 Impact Factor
  • Disease markers 01/1999; 15. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked lymphoproliferative syndrome (XLP or Duncan disease) is characterized by extreme sensitivity to Epstein-Barr virus (EBV), resulting in a complex phenotype manifested by severe or fatal infectious mononucleosis, acquired hypogammaglobulinemia and malignant lymphoma. We have identified a gene, SH2D1A, that is mutated in XLP patients and encodes a novel protein composed of a single SH2 domain. SH2D1A is expressed in many tissues involved in the immune system. The identification of SH2D1A will allow the determination of its mechanism of action as a possible regulator of the EBV-induced immune response.
    Nature Genetics 11/1998; 20(2):129-35. · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the utility of single-stranded conformation polymorphism (SSCP) analysis for mutation screening in the BTK (Bruton's tyrosine kinase) gene, we investigated 56 X-linked agammaglobulinemia (XLA) families. To obtain genotype/ phenotype correlations, predicted protein aberrations were correlated with the clinical course of the disease. This study included 56 patients with XLA, with or without a positive family history, who were diagnosed on the basis of their clinical features, low peripheral B-cell count, and low immunoglobulin levels. Ten patients with isolated hypogammaglobulinemia and 50 healthy males served as controls. SSCP analysis was performed for the entire BTK gene, including the exon-intron boundaries and the promoter region. Structural implications of the missense mutations were investigated by molecular modeling, and the functional consequences of some mutations also were evaluated by in vitro kinase assays and Western blot analysis. We report the largest series of patients with XLA to date. All but 5 of the 56 index patients with XLA screened with SSCP analysis showed BTK gene abnormalities, and in 2 of the 5 SSCP-negative patients, no BTK protein was found by Western blot analysis. There were 51 mutations, including 37 novel ones, distributed across the entire gene. This report contains the first promoter mutation as well as 14 novel missense mutations with the first ones described for the Tec homology domain and the glycine-rich motif in the SH1 domain. Each index patient had a different mutation, except for four mutations, each in two unrelated individuals. This result supports the strong tendency for private mutations in this disease. No mutations were found in the controls. Our results demonstrate that molecular genetic testing by SSCP analysis provides an accurate tool for the definitive diagnosis of XLA and the discrimination of borderline cases, such as certain hypogammaglobulinemia or common variable immunodeficiency patients with overlapping clinical features. Genotype/ phenotype correlations are not currently possible, making prediction of the clinical course based on molecular genetic data infeasible.
    PEDIATRICS 03/1998; 101(2):276-84. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html
    Nucleic Acids Research 02/1998; 26(1):242-7. · 8.81 Impact Factor

Publication Stats

1k Citations
233.53 Total Impact Points

Institutions

  • 2002–2006
    • Max Planck Institute of Biochemistry
      • Department of Molecular Medicine
      München, Bavaria, Germany
    • University College London
      • Institute of Ophthalmology
      London, ENG, United Kingdom
  • 2001–2003
    • Lund University
      Lund, Skåne, Sweden
  • 1998
    • University Hospital München
      München, Bavaria, Germany