K. Nourijelyani

Tehran University of Medical Sciences, Teheran, Tehrān, Iran

Are you K. Nourijelyani?

Claim your profile

Publications (4)1.28 Total impact

  • Source
    Tirgar A, Golbabaei F, Hamedi J, Nourijelyani K
    [Show abstract] [Hide abstract]
    ABSTRACT: Airborne hexavalent chromium has been classified as a human respiratory carcinogen and long term exposure has been known to cause ulceration and perforation of the nasal septum, bronchitis, asthma, and liver and kidney damage. Chromium electroplating plants are the major sources of atmospheric chromium and packed-bed scrubbers are the common control devices used to reduce emission of chromic acid mist from electroplating bathes. The feasibility of a new method to remove this pollutant using alginate beads as a biomass derivative was investigated by one factor at a time approach and Taguchi experimental design. Polluted air with different chromium mistconcentrations (10-5000 μg/m3) was contacted to alginate beads (3.3-20 g/L), floating in distilled water with adjusted pH (3-7), using an impinger at different temperatures (20 and 35oC), and various velocities (1.2 and 2.4 m/s). Although there were no statistical significant differences between factor levels, the higher ions removal efficiencies were achieved at lower levels of air velocities, pollution concentrations, higher levels of pHs, temperatures, and sorbent concentrations.
    International Journal of Environmental Science and Technology. 01/2011;
  • Source
    F. Golbabaei, A. Tirgar, SJ Shahtaheri, K. Nourijelyani
    Journal of School of Public Health and Institute of Public Health Research. 01/2007; 5(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromium mist generator is an essential tool for conducting researches and making science-based recommendations to evaluate air pollution and its control systems. The purpose of this research was to design and construct a homogenous chromium mist generator and the study of some effective factors including sampling height and distances between samplers in side-by-side sampling on chromium mist sampling method. A mist generator was constructed, using a chromium electroplating bath in pilot scale. Concentration of CrO3 and sulfuric acid in plating solution was 125 g L-1 and 1.25 g L-1, respectively. In order to create permanent air sampling locations, a Plexiglas cylindrical chamber (75 cm height, 55 cm i.d) was installed the bath overhead. Sixty holes were produced on the chamber in 3 rows (each 20). The distance between rows and holes was 15 and 7.5 cm, respectively. Homogeneity and effective factors were studied via side-by-side air sampling method. So, 48 clusters of samples were collected on polyvinyl chloride (PVC) filters housed in sampling cassettes. Cassettes were located in 35, 50, and 65 cm above the solution surface with less than 7.5 and/or 7.5-15 cm distance between heads. All samples were analyzed according to the NIOSH method 7600. According to the ANOVA test, no significant differences were observed between different sampling locations in side-by-side sampling (P=0.82) and between sampling heights and different samplers distances (P=0.86 and 0.86, respectively). However, there were notable differences between means of coefficient of variations (CV) in various heights and distances. It is concluded that the most chromium mist homogeneity could be obtained at height 50 cm from the bath solution surface and samplers distance of < 7.5 cm.
    Journal of the Brazilian Chemical Society 01/2006; · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airborne hexavalent chromium is a known human respiratory carcinogen and allergen. Many workers are exposed to hexavalent chromium in various processes which chromium electroplating plants are the most common. In this study, the feasibility of a new control approach to remove this pollutant using chitosan beads as a biosorbent was investigated. Hexavalent chromium sorption was studied relative to pH, pollution concentration, sorbent concentration, temperature, and air velocity using one factor at a time approach and Taguchi experimental design. Polluted air with different chromium mist concentrations (10-5000 μg/m3) was contacted to chitosan beads (3.3-20 g/L), floating in distilled water with adjusted pH (3-7), using an impinger at different temperatures (20 and 35 °C), and various velocities (1.12 and 2.24 m/s). The ANOVA test result showed that, there were statistical significant differences between factor levels except optimized pH levels. The higher ions removal efficiencies were achieved at lower levels of air velocities, pollution concentrations, and higher levels of solution pH values, temperatures, and sorbent concentrations.
    International Journal of Environment Science and Technology (ISSN: 1735-1472) Vol 3 Num 3. 01/2006;