Nobuaki Maeda

Tokyo Metropolitan Institute of Medical Science, Edo, Tōkyō, Japan

Are you Nobuaki Maeda?

Claim your profile

Publications (63)203.02 Total impact

  • Source
    Nobuaki Maeda
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration.
    Frontiers in Neuroscience 03/2015; 9:98. DOI:10.3389/fnins.2015.00098 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparan sulfate proteoglycans (HSPGs) play pivotal roles in the regulation of Wnt signaling activity in several tissues. At the Drosophila melanogaster neuromuscular junction (NMJ), Wnt/Wingless (Wg) regulates the formation of both pre- and postsynaptic structures; however, the mechanism balancing such bidirectional signaling remains elusive. In this paper, we demonstrate that mutations in the gene of a secreted HSPG, perlecan/trol, resulted in diverse postsynaptic defects and overproduction of synaptic boutons at NMJ. The postsynaptic defects, such as reduction in subsynaptic reticulum (SSR), were rescued by the postsynaptic activation of the Frizzled nuclear import Wg pathway. In contrast, overproduction of synaptic boutons was suppressed by the presynaptic down-regulation of the canonical Wg pathway. We also show that Trol was localized in the SSR and promoted postsynaptic accumulation of extracellular Wg proteins. These results suggest that Trol bidirectionally regulates both pre- and postsynaptic activities of Wg by precisely distributing Wg at the NMJ.
    The Journal of Cell Biology 01/2013; 200(2). DOI:10.1083/jcb.201207036 · 9.83 Impact Factor
  • Keisuke Kamimura · Nobuaki Maeda
    Neuroscience Research 09/2011; 71. DOI:10.1016/j.neures.2011.07.460 · 1.94 Impact Factor
  • Neuroscience Research 09/2011; 71. DOI:10.1016/j.neures.2011.07.1492 · 1.94 Impact Factor
  • Neuroscience Research 12/2010; 68:E249-E249. DOI:10.1016/j.neures.2010.07.1106 · 1.94 Impact Factor
  • Nobuaki Maeda · Kazunari Nishimura
    Neuroscience Research 12/2010; 68:e137. DOI:10.1016/j.neures.2010.07.2178 · 1.94 Impact Factor
  • Keisuke Kamimura · Nobuaki Maeda
    Neuroscience Research 12/2010; 68:e232-e233. DOI:10.1016/j.neures.2010.07.1027 · 1.94 Impact Factor
  • Source
    Keisuke Kamimura · Nobuaki Maeda · Hiroshi Nakato
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparan sulfate proteoglycans (HSPGs) participate in a wide range of biological processes through interactions with a number of ligand proteins. The nature of these interactions largely depends on the heparan sulfate (HS) moiety of HSPGs, which undergoes a series of modifications by various HS-modifying enzymes (HSMEs). Although the effects of alterations in a single HSME on physiological processes have started to be studied, it remains elusive how a combination of these molecules control the structure and function of HS. Here we systematically manipulated the HS structures and analyzed their effect on morphogenesis and signaling, using the genetically tractable model organism, Drosophila. We generated transgenic fly strains overexpressing HSMEs alone or in combination. Unsaturated disaccharide analyses of HS showed that expression of various HSMEs generates distinct HS structures, and the enzymatic activities of HSMEs are influenced by coexpression of other HSMEs. Furthermore, these transgenic HSME animals showed a different extent of lethality, and a subset of HSMEs caused specific morphological defects due to defective activities of Wnt and bone morphogenetic protein signaling. There is no obvious relationship between HS unsaturated disaccharide composition and developmental defects in HSME animals, suggesting that other structural factors, such as domain organization or sulfation sequence, might regulate the function of HS.
    Glycobiology 12/2010; 21(5):607-18. DOI:10.1093/glycob/cwq202 · 3.15 Impact Factor
  • N Maeda · M Ishii · K Nishimura · K Kamimura
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate and heparan sulfate proteoglycans are major components of the cell surface and extracellular matrix in the brain. Both chondroitin sulfate and heparan sulfate are unbranched highly sulfated polysaccharides composed of repeating disaccharide units of glucuronic acid and N-acetylgalactosamine, and glucuronic acid and N-acetylglucosamine, respectively. During their biosynthesis in the Golgi apparatus, these glycosaminoglycans are highly modified by sulfation and C5 epimerization of glucuronic acid, leading to diverse heterogeneity in structure. Their structures are strictly regulated in a cell type-specific manner during development partly by the expression control of various glycosaminoglycan-modifying enzymes. It has been considered that specific combinations of glycosaminoglycan-modifying enzymes generate specific functional microdomains in the glycosaminoglycan chains, which bind selectively with various growth factors, morphogens, axon guidance molecules and extracellular matrix proteins. Recent studies have begun to reveal that the molecular interactions mediated by such glycosaminoglycan microdomains play critical roles in the various signaling pathways essential for the development of the brain.
    Neurochemical Research 11/2010; 36(7):1228-40. DOI:10.1007/s11064-010-0324-y · 2.59 Impact Factor
  • K Nishimura · M Ishii · M Kuraoka · K Kamimura · N Maeda
    [Show abstract] [Hide abstract]
    ABSTRACT: Axon-dendrite polarity of neurons is essential for information processing in the nervous system. Here we studied the functions of chondroitin sulfate (CS) and heparan sulfate (HS) in neuronal polarization using cultured dissociated hippocampal neurons. Immunohistochemical analyses of early cultured neurons indicated the distribution of these glycosaminoglycans to be quite different. While CS epitopes were accumulated in the focal contacts present in axons and cell bodies, those of HS were detected ubiquitously on the cell surface including on dendrites and axons. Treatment with chondroitinase (CHase) ABC, which degrades CS, and knockdown of a CS sulfotransferase, N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (4,6-ST), which is involved in the biosynthesis of oversulfated structures, induced the formation of multiple axons in hippocampal neurons. Time-lapse recordings revealed the multiple axons of CHase ABC-treated neurons to be highly unstable, extending and retracting, repeatedly. CHase ABC-treatments suggested that CS is involved in the formation of phosphorylated focal adhesion kinase-positive focal contacts. Thus, CS may enhance integrin signaling in the nascent axons, supporting axon specification. On the other hand, when neurons were treated with heparitinases that specifically degrade HS, neurons with a single axon increased. The axons of HSase-treated neurons extended steadily and showed almost no retraction. These results suggest that CS stabilizes and HS destabilizes the growth of axons in an opposing manner, contributing to early neuronal polarization.
    Neuroscience 09/2010; 169(4):1535-47. DOI:10.1016/j.neuroscience.2010.06.027 · 3.36 Impact Factor
  • Nobuaki Maeda
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate is popular in the field of neuroscience, because the treatment of nervous tissues with chondroitinase ABC, which degrades chondroitin sulfate up to unsaturated disaccharides, causes severe changes in various aspects of neural development and functions. Chondroitinase ABC treatments of developing nervous tissue impair the growth and differentiation of neural progenitor cells, and cause various pathfinding errors of axons. After injury to the adult central nervous system, axon regeneration fails at scar regions expressing large amounts of chondroitin sulfate proteoglycans. However, after chondroitinase ABC treatment, many axons regenerate and traverse the damaged areas. Furthermore, it was revealed that chondroitin sulfate proteoglycans are involved in neural plasticity. These observations indicated that chondroitin sulfate proteoglycans as major components of the extracellular matrix and cell surface play pivotal roles in the development, regeneration, and plasticity of neuronal networks. Chondroitin sulfate shows highly diverse structural variation, and recent studies indicated that this glycosaminoglycan binds with various growth factors, chemokines and axon guidance molecules in a structure-dependent manner and regulates their activities. Notably, oversulfated structures such as D (GlcA(2-O-sulfate)beta 1-3GalNAc(6-O-sulfate)) and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the binding sites for many proteins, and play important roles in regulation of the growth of neural progenitors, neurite extension, and neuronal migration. The synthesis of these structures is strictly regulated by the chondroitin sulfate synthase family and many sulfotransferases, which should be useful therapeutic targets in neurological disorders.
    Central Nervous System Agents in Medicinal Chemistry(Formerly Current Medicinal Chemistry - Central Nervous System Agents) 03/2010; 10(1):22-31. DOI:10.2174/187152410790780136
  • Nobuaki Maeda · Nobuna Fukazawa · Maki Ishii
    [Show abstract] [Hide abstract]
    ABSTRACT: PTPzeta and lectican family members are major chondroitin sulfate proteoglycans (CS-PGs) in the brain, which bind with many proteins via core protein and CS portions. Recent studies revealed that the oversulfated structures in CS constitute high affinity binding sites for various growth factors and axon guidance molecules, and play important roles in the proliferation of neural progenitor cells, neurite extension and neuronal migration. PTPzeta uses pleiotrophin as a ligand. The CS portion of PTPzeta constitutes a part of the pleiotrophin-binding site, and oversulfated D unit increases the binding affinity. Pleiotrophin-PTPzeta signaling regulates the morphogenesis of Purkinje cell by controlling the tyrosine phosphorylation of a Notch-related transmembrane protein, DNER. In the brain of adult animals, a subset of neurons are surrounded by CS-PG-rich extracellular matrix called perineuronal net, in which lecticans form complexes with hyaluronic acid and tenascin-R. CS-PGs in the perineuronal net regulate ocular dominance plasticity in the visual cortex by enhancing the uptake of Otx2 homeoprotein by parvalbumin-positive interneurons in a CS-dependent manner. These studies revealed unexpectedly complex mechanisms of CS-PG functions.
    Frontiers in Bioscience 01/2010; 15:626-44. DOI:10.2741/3637 · 3.52 Impact Factor
  • Nobuaki Maeda · Maki Ishii · Kazunari Nishimura
    Neuroscience Research 12/2009; 65. DOI:10.1016/j.neures.2009.09.1081 · 1.94 Impact Factor
  • Hitomi Asai · Shota Yokoyama · Nobuaki Maeda · Seiji Miyata
    Neuroscience Research 12/2009; 65. DOI:10.1016/j.neures.2009.09.402 · 1.94 Impact Factor
  • Source
    H Asai · S Yokoyama · S Morita · N Maeda · S Miyata
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-type protein tyrosine phosphatase zeta/beta (RPTPzeta) is a transmembrane chondroitin sulfate proteoglycan (CSPG) and has been shown to play crucial roles in controlling axonal growth and neuronal migration. The RPTPzeta has two transmembranous isoforms, shorter receptor form of RPTPzeta (sRPTPzeta) and full-length receptor form of RPTPzeta (fRPTPzeta), but no studies have been reported about functional difference of these two isoforms. In the present study, therefore, we examined whether or not two RPTPzeta isoforms have different role in controlling dendritic morphology and synaptic number in cultured hippocampal neurons using the quantitative morphometrical analysis. Confocal microscopic observation showed that the immunoreactivity of RPTPzeta was observed throughout cells such as axons, growth cones, and dendrites at the early stages of neuronal culture, while it was seen predominantly on dendrites at the late stages. Western blotting analysis revealed that fRPTPzeta was mainly expressed at the early stages of culture and both RPTPzeta isoforms were expressed at late stages of culture. The overexpression of sRPTPzeta in hippocampal neurons increased the dendritic arborization without altering the average length of dendritic branches, whereas that of fRPTPzeta decreased the dendritic arborization and increased the average length of dendritic branches. The RNA interference of fRPTPzeta expression increased the dendritic arborization without altering the average length of dendritic branches. The overexpression of fRPTPzeta decreased the density of hippocampal dendritic synapses, but that of sRPTPzeta had no effects. Pleiotrophin, a ligand for RPTPzeta to interfere the phosphatase activity, increased the density of hippocampal dendritic synapses. Thus, the present study demonstrates that two transmembranous RPTPzeta isoforms have different functions for regulating dendritogenesis and synaptogenesis.
    Neuroscience 09/2009; 164(3):1020-30. DOI:10.1016/j.neuroscience.2009.09.012 · 3.36 Impact Factor
  • Maki Ishii · Nobuaki Maeda
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate (CS) proteoglycans bind with various proteins through CS chains in a CS structure-dependent manner, in which oversulfated structures, such as iB (IdoA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate)), D (GlcA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate)), and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the critical functional module. In this study, we examined the expression and function of three CS sulfotransferases in the developing neocortex: uronyl 2-O-sulfotransferase (UST), N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (4,6-ST) and dermatan 4-O-sulfotransferase-1 (D4-ST), which are responsible for the synthesis of oversulfated structures. The CS chains of the neocortex of mouse embryos contained significant amounts of D and E units that are generated by UST and 4,6-ST, respectively. UST and 4,6-ST mRNAs were expressed in the ventricular and subventricular zones, and their expression increased during late embryonic development. In utero electroporation experiments indicated that knockdown of UST and 4,6-ST resulted in the disturbed migration of cortical neurons. The neurons electroporated with the short hairpin RNA constructs of UST and 4,6-ST accumulated in the lower intermediate zone and in the subventricular zone, showing a multipolar morphology. The cDNA constructs of UST and 4,6-ST rescued the defects caused by the RNA interference, and the neurons were able to migrate radially. On the other hand, knockdown of D4-ST, which is involved in the biosynthesis of the iB unit, caused no migratory defects. These results revealed that specific oversulfated structures in CS chains play critical roles in the migration of neuronal precursors during cortical development.
    Journal of Biological Chemistry 10/2008; 283(47):32610-20. DOI:10.1074/jbc.M806331200 · 4.57 Impact Factor
  • Source
    Maki Ishii · Nobuaki Maeda
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.
    Glycobiology 09/2008; 18(8):602-14. DOI:10.1093/glycob/cwn040 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase zeta (PTPzeta) is a receptor type protein tyrosine phosphatase that uses pleiotrophin as a ligand. Pleiotrophin inactivates the phosphatase activity of PTPzeta, resulting in the increase of tyrosine phosphorylation levels of its substrates. We studied the functional interaction between PTPzeta and DNER, a Notch-related transmembrane protein highly expressed in cerebellar Purkinje cells. PTPzeta and DNER displayed patchy colocalization in the dendrites of Purkinje cells, and immunoprecipitation experiments indicated that these proteins formed complexes. Several tyrosine residues in and adjacent to the tyrosine-based and the second C-terminal sorting motifs of DNER were phosphorylated and were dephosphorylated by PTPzeta, and phosphorylation of these tyrosine residues resulted in the accumulation of DNER on the plasma membrane. DNER mutants lacking sorting motifs accumulated on the plasma membrane of Purkinje cells and Neuro-2A cells and induced their process extension. While normal DNER was actively endocytosed and inhibited the retinoic-acid-induced neurite outgrowth of Neuro-2A cells, pleiotrophin stimulation increased the tyrosine phosphorylation level of DNER and suppressed the endocytosis of this protein, which led to the reversal of this inhibition, thus allowing neurite extension. These observations suggest that pleiotrophin-PTPzeta signaling controls subcellular localization of DNER and thereby regulates neuritogenesis.
    Molecular and Cellular Biology 08/2008; 28(14):4494-506. DOI:10.1128/MCB.00074-08 · 4.78 Impact Factor
  • Maki Ishii · Nobuaki Maeda
    Neuroscience Research 12/2007; 58. DOI:10.1016/j.neures.2007.06.1076 · 1.94 Impact Factor
  • Showta Yokoyama · Nobuaki Maeda · Seiji Miyata
    Neuroscience Research 12/2007; 58. DOI:10.1016/j.neures.2007.06.914 · 1.94 Impact Factor

Publication Stats

2k Citations
203.02 Total Impact Points


  • 2011–2015
    • Tokyo Metropolitan Institute of Medical Science
      • Department of Sensory and Motor Systems
      Edo, Tōkyō, Japan
  • 2005–2010
    • Tokyo Metropolitan Institute
      Edo, Tōkyō, Japan
  • 2004
    • Keio University
      • Department of Anatomy
      Tokyo, Tokyo-to, Japan
  • 1994–2004
    • National Institute for Basic Biology
      Okazaki, Aichi, Japan