Ning Xu

Fourth Military Medical University, Xi’an, Liaoning, China

Are you Ning Xu?

Claim your profile

Publications (7)22.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: /st>Although opioids are widely used as analgesics in general anaesthesia, they have unpleasant side-effects and can delay postoperative recovery. Acupuncture and related techniques are effective for acute and chronic pain, and reduces some side-effects. We assessed the effect of transcutaneous electric acupoint stimulation (TEAS) on intra-operative remifentanil consumption and the incidences of anaesthesia-related side-effects. /st>Sixty patients undergoing sinusotomy were randomly assigned to TEAS or control group. TEAS consisted of 30 min of stimulation (6-9 mA, 2/10 Hz) on the Hegu (LI4), Neiguan (PC6), and Zusanli (ST36) before anaesthesia. The patients in the control group had the electrodes applied, but received no stimulation. Bispectral index was used to monitor the depth of anaesthesia. Perioperative haemodynamics were recorded, and peripheral blood samples were collected to measure the levels of mediators of surgical stress. The primary end point was intraoperative remifentanil consumption and the secondary endpoints were recovery quality and anaesthesia-related side-effects. /st>Patients in the TEAS group required 39% less remifentanil during surgery than controls [0.0907 (sd 0.026) μg kg(-1) min(-1) vs 0.051 (0.018) μg kg(-1) min(-1)]. There were no differences in intra-operative haemodynamics or surgical stress between groups. However, the time to extubation and recall in the control group was 16.8 (6.8) min and 23.0 (5.0) min, respectively, significantly longer than that in the TEAS group (P<0.01). TEAS also decreased the incidence of dizziness and pruritus within the first 24 h after surgery (P<0.01). /st>The use of TEAS significantly reduced intra-operative remifentanil consumption and alleviated postoperative side-effects in patients undergoing sinusotomy.Clinical trial registrationThe trial was registered at clinicaltrials.gov (NCT01700855).
    BJA British Journal of Anaesthesia 02/2014; · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary objective: Paired immunoglobulin-like receptor-B (PirB) is another receptor, except for the Nogo receptor, that is involved in inhibition of axons regeneration after central nervous system injury. However, the expression of PirB in focal cerebral ischaemic brain remains unclear. Herein, this study investigated spatial-temporal expression of PirB in the mouse brain following transient focal cerebral ischaemia. Methods and procedure: Adult male C57BL/6 mice underwent a 60-minute transient occlusion of middle cerebral artery. Mice were killed and brain samples were harvested at 30 minutes, 2 hours, 24 hours, 3 days and 7 days after reperfusion. Expression of PirB in the brain was determined by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemical staining. Main outcomes and results: The results showed that PirB was mainly expressed in ischaemic penumbra. PirB mRNA and protein expression began to increase at 2 hours, peaked at 24 hours and lasted for 7 days after reperfusion in the ischaemic penumbra. By using immunofluorescence, PirB signals were co-localized with NeuN-positive neurons. Conclusion: PirB expression is up-regulated in ischaemic penumbra following transient focal cerebral ischaemia. PirB expression in neurons may play important pathological roles in the inhibition of axonal regeneration after stroke, suggesting that the inhibition of PirB expression may enhance axonal regeneration and functional recovery after stroke.
    Brain Injury 08/2013; · 1.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We first reported that electroacupuncture (EA) pretreatment at the Baihui acupoint (GV20) induces ischemic tolerance. Our recent study demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) expression was up-regulated following transient focal cerebral ischemia. Therefore, we investigated whether NDRG2 was involved in the ischemic tolerance induced by EA pretreatment in rats. Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 120 minutes in male Sprague-Dawley rats. The neurobehavioral score, infarction volume, and extent of neuronal apoptosis were evaluated at 24 hours after reperfusion. The expression of NDRG2 in the brain was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescent staining. Electroacupuncture pretreatment decreased infarction volume and improved neurologic scores at 24 hours after reperfusion. Double immunofluorescence revealed that NDRG2 expression in astrocytes was suppressed in the EA group at 24 hours after reperfusion, and that NDRG2 protein expression was weak in the nucleus and strong in the cytoplasm of the EA group, but strong in the nucleus of the MCAO group. Triple immunofluorescent staining for terminal deoxynucleotidyl transferase nick-end labeling (TUNEL), NDRG2, and 4',6-diamidino-2-phenylindole (DAPI) showed that NDRG2 co-localised with apoptotic cells. Moreover, the number of apoptotic cells decreased with the attenuation of NDRG2 expression in the EA group compared to the MCAO group. Our results indicated that NDRG2 is involved in anti-apoptosis induced by EA pretreatment after focal cerebral ischemia in rats. N-Myc downstream-regulated gene 2 was involved in EA pretreatment-induced cerebral ischemic tolerance. These findings may be important for our understanding of the cellular signaling pathways induced by EA pretreatment.
    Neurological Research 05/2013; 35(4):406-14. · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-myc downstream-regulated gene 2 (NDRG2) has been documented to be a pro-differentiative and anti-proliferative gene in cancer research. Our previous study found a significant NDRG2 up-regulation in reactive astrocytes of penumbra after transient focal cerebral ischemia, which was parallel to the enhancement of TUNEL-positive signals. However, it is still uncertain whether NDRG2 participates in cellular apoptosis induced by ischemia-reperfusion injury in brain. In this study, we investigated the role of NDRG2 in cellular apoptosis induced by oxygen-glucose deprivation (OGD) in IL-6-differentiated C6 glioma cells. The results showed that NDRG2 was up-regulated and translocated from the cytoplasm to the nucleus after OGD exposure. NDRG2 over-expression exhibited an anti-proliferative effect and increased the Bax/Bcl-2 ratio after OGD exposure, while NDRG2 silencing promoted the cellular proliferation and attenuated the up-regulation of Bax/Bcl-2 ratio. The pro-apoptotic effect of p53 was verified by the results in which p53 silencing greatly reduced the percentage of OGD-induced apoptotic cells. p53 silencing also reduced the OGD-induced NDRG2 up-regulation. However, over-expression of p53 did not further improve the NDRG2 up-regulation. In conclusion, NDRG2 is a p53-associated regulator of apoptosis in C6-originated astrocytes after OGD exposure. These findings bring insight to the roles of NDRG2 in ischemic-hypoxic injury and provide potential targets for future clinical therapies on stroke.
    PLoS ONE 01/2013; 8(2):e57130. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that electroacupuncture (EA) pretreatment induced tolerance against cerebral ischemic injury, but the mechanisms underlying this effect of EA are unknown. In this study, we assessed the effect of EA pretreatment on the expression of α7 nicotinic acetylcholine receptors (α7nAChR), using the ischemia-reperfusion model of focal cerebral ischemia in rats. Further, we investigated the role of high mobility group box 1 (HMGB1) in neuroprotection mediated by the α7nAChR and EA. Rats were treated with EA at the acupoint "Baihui (GV 20)" 24 h before focal cerebral ischemia which was induced for 120 min by middle cerebral artery occlusion. Neurobehavioral scores, infarction volumes, neuronal apoptosis, and HMGB1 levels were evaluated after reperfusion. The α7nAChR agonist PHA-543613 and the antagonist α-bungarotoxin (α-BGT) were used to investigate the role of the α7nAChR in mediating neuroprotective effects. The roles of the α7nAChR and HMGB1 release in neuroprotection were further tested in neuronal cultures exposed to oxygen and glucose deprivation (OGD). Our results showed that the expression of α7nAChR was significantly decreased after reperfusion. EA pretreatment prevented the reduction in neuronal expression of α7nAChR after reperfusion in the ischemic penumbra. Pretreatment with PHA-543613 afforded neuroprotective effects against ischemic damage. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and HMGB1 release following reperfusion, and the beneficial effects were attenuated by α-BGT. The HMGB1 levels in plasma and the penumbral brain tissue were correlated with the number of apoptotic neurons in the ischemic penumbra. Furthermore, OGD in cultured neurons triggered HMGB1 release into the culture medium, and this effect was efficiently suppressed by PHA-543,613. Pretreatment with α-BGT reversed the inhibitory effect of PHA-543,613 on HMGB1 release. These data demonstrate that EA pretreatment strongly protects the brain against transient cerebral ischemic injury, and inhibits HMGB1 release through α7nAChR activation in rats. These findings suggest the novel potential for stroke interventions harnessing the anti-inflammatory effects of α7nAChR activation, through acupuncture or pharmacological strategies.
    Journal of Neuroinflammation 01/2012; 9:24. · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, hydrogen gas (H₂) is reported to be a new therapeutic agent in organ damage induced by ischemia-reperfusion (I/R). The present study was designed to investigate the beneficial effects of H₂ against spinal cord I/R injury and its associated mechanisms. Spinal cord ischemia was induced by infrarenal aortic occlusion for 20 min in male New Zealand white rabbits. Treatment with 1%, 2% or 4% H₂ inhalation was given from 10 min before reperfusion to 60 min after reperfusion (total 70 min). Here, we found that I/R-challenged animals showed significant spinal cord damage characterized by the decreased numbers of normal motor neurons and hind-limb motor dysfunction, which was significantly improved by 2% and 4 % H₂ treatment. Furthermore, we found that the beneficial effects of H₂ treatment against spinal cord I/R injury were associated with the decreased levels of oxidative products [8-iso-prostaglandin F2α (8-iso-PGF2α) and malondialdehyde (MDA)] and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and high-mobility group box 1 (HMGB1)], as well as increased activities of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] in serum and spinal cord. In addition, H₂ treatment reduced motor neuron apoptosis in the spinal cord of this model. Thus, H₂ inhalation may be an effective therapeutic strategy for spinal cord I/R damage.
    Brain research 03/2011; 1378:125-36. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning.
    Journal of Cerebral Blood Flow & Metabolism 06/2006; 26(5):666-74. · 5.40 Impact Factor