Naveen A. Reddy

University of California, Riverside, Riverside, California, United States

Are you Naveen A. Reddy?

Claim your profile

Publications (75)353.44 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present initial results of a large near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using the recently-commissioned MOSFIRE instrument on the Keck 1 10m telescope. We focus on 179 galaxies with redshifts 2.0 < z < 2.6, most of which have high-quality MOSFIRE spectra in both H and K-band atmospheric windows, allowing sensitive measurements of [OIII]4960,5008, H-beta, [NII]6585, and H-alpha emission lines. We show unambiguously that the locus of z~2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits an almost entirely disjoint, yet similarly tight, relationship between the line ratios [NII]/Halpha and [OIII]/Hbeta as compared to local galaxies. We argue that the offset of the z~2.3 BPT locus relative to that at z~0 is caused primarily by higher excitation (driven by both higher ionization parameter and harder stellar ionizing radiation field) than applies to most local galaxies. Also unlike nearby counterparts, a z~2.3 galaxy's position along the BPT locus is surprisingly insensitive to gas-phase O/H. The observed emission line ratios are most easily reproduced by models in which the stellar ionizing radiation field has Teff=50000-60000 K, gas-phase O/H in the range 0.2 < Z/Zsun < 1.0, and gas-phase N/O close to solar. Such high sustained Teff are not easily produced by standard population synthesis models, but are expected if massive binaries and/or rapid stellar rotation are important for the evolution of main sequence O-stars in typical high-redshift galaxies. We assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities of high redshift galaxies, as well as their likely systematic biases. The empirical correlation between M* and inferred metallicity (the "MZR") at z~2.3 is as tight as for local galaxy samples, but is offset to lower metallicity (at all M*) by ~0.35 dex (abridged)
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MOSFIRE Deep Evolution Field (MOSDEF) survey is using the MOSFIRE instrument on the Keck I telescope to obtain more than 1700 rest-frame optical spectra of galaxies from redshift 1.5 to 3.6 over four years. We are using the first 200 spectra to investigate the prevalence of outflows measured in emission in broad components of the nebular emission lines. We create stacks of galaxies based on properties such as star formation rate, stellar mass, and star formation rate surface density (controlling for the presence of AGNs) in order to study how outflow strength depends on these factors. Additionally, we will stack spectra by redshift to understand how outflows change over time. We will present the results of two component (narrow and broad) fits to the nebular emission and compare to theoretical predictions of outflow efficiency.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck/MOSFIRE observations of the role of environment in the formation of galaxies at z~2. Using K-band spectroscopy of H-alpha and [N II] emission lines, we have analyzed the metallicities of galaxies within and around a z=2.3 protocluster discovered in the HS1700+643 field. Our main sample consists of 23 protocluster and 20 field galaxies with estimates of stellar masses and gas-phase metallicities based on the N2 strong-line metallicity indicator. With these data we have examined the mass-metallicity relation (MZR) with respect to environment at z~2. We find that field galaxies follow the well-established trend between stellar mass and metallicity, such that more massive galaxies have larger metallicities. The protocluster galaxies, however, do not exhibit a dependence of metallicity on mass, with the low-mass protocluster galaxies showing an enhancement in metallicity compared to field galaxies spanning the same mass range. A comparison with galaxy formation models suggests that the mass-dependent environmental trend we observed can be qualitatively explained in the context of the recycling of "momentum-driven" galaxy wind material. Accordingly, winds are recycled on a shorter timescale in denser environments, leading to an enhancement in metallicity at fixed mass for all but the most massive galaxies. Future hydrodynamical simulations of z~2 overdensities matching the one in the HS1700 field will be crucial for understanding the origin of the observed environmental trend in detail.
    The Astrophysical Journal 06/2013; 774(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from a survey for z~2.85 Lyman-Continuum (LyC) emission in the HS1549+1933 field and place constraints on the amount of ionizing radiation escaping from star-forming galaxies. Using a custom narrowband filter (NB3420) tuned to wavelengths just below the Lyman limit at z>=2.82, we probe the LyC spectral region of 49 Lyman break galaxies (LBGs) and 91 Lya-emitters (LAEs) spectroscopically confirmed at z>=2.82. Four LBGs and seven LAEs are detected in NB3420. Using V-band data probing the rest-frame non-ionizing UV, we observe that many NB3420-detected galaxies exhibit spatial offsets between their LyC and non-ionizing UV emission and are characterized by extremely blue NB3420-V colors, corresponding to low ratios of non-ionizing to ionizing radiation (F_UV/F_LyC) that are in tension with current stellar population synthesis models. We measure average values of F_UV/F_LyC for our LBG and LAE samples, correcting for foreground galaxy contamination and HI absorption in the IGM. We find (F_UV/F_LyC)_corr^LBG=82 +/- 45 and (F_UV/F_LyC)_corr^LAE=7.4 +/- 3.6. These flux-density ratios correspond respectively to relative LyC escape fractions of f_esc,rel^LBG=5-8% and f_esc,rel^LAE=18-49%, absolute LyC escape fractions of f_esc^LBG=1-2% and f_esc^LAE=5-15%, and a comoving LyC emissivity from star-forming galaxies of 8.8-15.0 x 10^24 ergs/s/Hz/Mpc^3. In order to study the differential properties of galaxies with and without LyC detections, we analyze narrowband Lya imaging and rest-frame near-infrared imaging, finding that while LAEs with LyC detections have lower Lya equivalent widths on average, there is no substantial difference in the rest-frame near-infrared colors of LBGs or LAEs with and without LyC detections. These preliminary results are consistent with an orientation-dependent model where LyC emission escapes through cleared paths in a patchy ISM.
    The Astrophysical Journal 06/2013; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We use stellar population synthesis modeling to analyze the host-galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z {approx} 2-3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host-galaxy properties. We compare AGN host-galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and star-formation rates than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star formation activity in star-forming galaxies at z {approx} 2-3. We suggest that a correlation between M {sub BH} and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
    The Astrophysical Journal 11/2012; 760(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This document summarizes the results of a community-based discussion of the potential science impact of the Mayall+BigBOSS highly multiplexed multi-object spectroscopic capability. The KPNO Mayall 4m telescope equipped with the DOE- and internationally-funded BigBOSS spectrograph offers one of the most cost-efficient ways of accomplishing many of the pressing scientific goals identified for this decade by the "New Worlds, New Horizons" report. The BigBOSS Key Project will place unprecedented constraints on cosmological parameters related to the expansion history of the universe. With the addition of an open (publicly funded) community access component, the scientific impact of BigBOSS can be extended to many important astrophysical questions related to the origin and evolution of galaxies, stars, and the IGM. Massive spectroscopy is the critical missing ingredient in numerous ongoing and planned ground- and space-based surveys, and BigBOSS is unique in its ability to provide this to the US community. BigBOSS data from community-led projects will play a vital role in the education and training of students and in maintaining US leadership in these fields of astrophysics. We urge the NSF-AST division to support community science with the BigBOSS multi-object spectrograph through the period of the BigBOSS survey in order to ensure public access to the extraordinary spectroscopic capability.
    11/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although grand-design spiral galaxies are relatively common in the local Universe, only one has been spectroscopically confirmed to lie at redshift z > 2 (HDFX 28; z = 2.011); and it may prove to be a major merger that simply resembles a spiral in projection. The rarity of spirals has been explained as a result of disks being dynamically 'hot' at z > 2 (refs 2-5), which may instead favour the formation of commonly observed clumpy structures. Alternatively, current instrumentation may simply not be sensitive enough to detect spiral structures comparable to those in the modern Universe. At z < 2, the velocity dispersion of disks decreases, and spiral galaxies are more numerous by z ≈ 1 (refs 7, 13-15). Here we report observations of the grand-design spiral galaxy Q2343-BX442 at z = 2.18. Spectroscopy of ionized gas shows that the disk is dynamically hot, implying an uncertain origin for the spiral structure. The kinematics of the galaxy are consistent with a thick disk undergoing a minor merger, which can drive the formation of short-lived spiral structure. A duty cycle of <100 Myr for such tidally induced spiral structure in a hot massive disk is consistent with its rarity.
    Nature 07/2012; 487(7407):338-40. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze rest-frame optical morphologies and gas-phase kinematics as traced by rest-frame far-UV and optical spectra for a sample of 204 star forming galaxies in the redshift range z ~ 2-3 drawn from the Keck Baryonic Structure Survey (KBSS). We find that spectroscopic properties and gas-phase kinematics are closely linked to morphology: compact galaxies with semi-major axis radii r <~ 2 kpc are substantially more likely than their larger counterparts to exhibit LyA in emission. Although LyA emission strength varies widely within galaxies of a given morphological type, all but one of 19 galaxies with LyA equivalent width W_LyA > 20 Angstroms have compact and/or multiple-component morphologies with r <= 2.5 kpc. The velocity structure of absorption lines in the galactic continuum spectra also varies as a function of morphology. Galaxies of all morphological types drive similarly strong outflows (as traced by the blue wing of interstellar absorption line features), but the outflows of larger galaxies are less highly ionized and exhibit larger optical depth at the systemic redshift that may correspond to a decreasing efficiency of feedback in evacuating gas from the galaxy. This v ~ 0 km/s gas is responsible both for shifting the mean absorption line redshift and attenuating W_LyA (via a longer resonant scattering path) in galaxies with larger rest-optical half light radii. In contrast to galaxies at lower redshifts, there is no evidence for a correlation between outflow velocity and inclination, suggesting that outflows from these puffy and irregular systems may be poorly collimated. (Abbrev.)
    The Astrophysical Journal 06/2012; 759(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
    06/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large sample of spectroscopically confirmed galaxies at 1.4<z<3.7, with complementary imaging in the near- and mid-IR from the ground and from Hubble and Spitzer, is used to infer the average star formation histories (SFHs) of typical galaxies from z~7 to 2. For a subset of 302 galaxies at 1.5<z<2.6, we perform a comparison of star formation rates (SFRs) determined from SED modeling (SFRs[SED]) and those calculated from deep Keck UV and Spitzer/MIPS 24 micron imaging (SFRs[IR+UV]). Exponentially declining SFHs yield SFRs[SED] that are 5-10x lower on average than SFRs[IR+UV], indicating that declining SFHs may not be accurate for typical galaxies at z>2. The SFRs of z~2-3 galaxies are directly proportional to their stellar masses M*, with unity slope---a result that is confirmed with Spitzer/IRAC stacks of 1179 UV-faint (R>25.5) galaxies---for M*>5e8 Msun and SFRs >2 Msun/yr. We interpret this result in the context of several systematic biases that can affect determinations of the SFR-M* relation. The average specific SFRs at z~2-3 are similar within a factor of two to those measured at z>4, implying an average SFH where SFRs increase with time. A consequence of these rising SFHs is that (a) a substantial fraction of UV-bright z~2-3 galaxies had faint sub-L* progenitors at z>4; and (b) gas masses must increase with time from z=7 to 2, over which time the net cold gas accretion rate---as inferred from the specific SFR and the Kennicutt-Schmidt relation---is ~2-3x larger than the SFR . However, if we evolve to higher redshift the SFHs and masses of the halos that are expected to host L* galaxies at z~2, we find that <10% of the baryons accreted onto typical halos at z>4 actually contribute to star formation at those epochs. These results highlight the relative inefficiency of star formation even at early cosmic times when galaxies were first assembling. [Abridged]
    The Astrophysical Journal 05/2012; 754(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from the Keck Baryonic Structure Survey (KBSS), a unique spectroscopic survey designed to explore the connection between galaxies and intergalactic baryons. The KBSS is optimized for the redshift range z ~ 2-3, combining S/N ~ 100 Keck/HIRES spectra of 15 hyperluminous QSOs with densely sampled galaxy redshift surveys surrounding each QSO sightline. We perform Voigt profile decomposition of all 6000 HI absorbers within the full Lya forest in the QSO spectra. Here we present the distribution, column density, kinematics, and absorber line widths of HI surrounding 886 star-forming galaxies with 2.0 < z < 2.8 and within 3 Mpc of a QSO sightline. We find that N_HI and the multiplicity of HI components increase rapidly near galaxies. The strongest HI absorbers within ~ 100 physical kpc of galaxies have N_HI ~ 3 dex higher than those near random locations in the IGM. The circumgalactic zone of most enhanced HI absorption (CGM) is found within 300 kpc and 300 km/s of galaxies. Nearly half of absorbers with log(N_HI) > 15.5 are found within the CGM of galaxies meeting our photometric selection, while their CGM occupy only 1.5% of the cosmic volume. The spatial covering fraction, multiplicity of absorption components, and characteristic N_HI remain elevated to transverse distances of 2 physical Mpc. Absorbers with log(N_HI) > 14.5 are tightly correlated with the positions of galaxies, while absorbers with lower N_HI are correlated only on Mpc scales. Redshift anisotropies on Mpc scales indicate coherent infall toward galaxies, while on scales of ~100 physical kpc peculiar velocities of 260 km/s are indicated. The median Doppler widths of absorbers within 1-3 virial radii of galaxies are ~50% larger than randomly chosen absorbers of the same N_HI, suggesting higher gas temperatures and/or increased turbulence likely caused by accretion shocks and/or galactic winds.
    The Astrophysical Journal 02/2012; 750(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
    The Astrophysical Journal Supplement Series 12/2011; 197(2):36. · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 < z < 8. We use new wide-field near-infrared data in GOODS-S from the CANDELS, HUDF09 and ERS programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z > 3.5, including 113 at z = 7 to 8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models, and measure the value of the UV spectral slope (beta) from the best-fit model spectrum. The median value of beta evolves significantly from -1.82 (+0.00,-0.04) at z = 4, to -2.37 (+0.26,-0.06) at z = 7. Additionally, we find that faint galaxies at z = 7 have beta = -2.68 (+0.39,-0.24) (~ -2.4 after correcting for observational bias); this is redder than previous claims in the literature, and does not require "exotic" stellar populations to explain their colors. This evolution can be explained by an increase in dust extinction, with the timescale consistent with low-mass AGB stars forming the bulk of the dust. We find no significant (< 2-sigma) correlation between beta and M_UV when measuring M_UV at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between beta and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have red colors at each redshift, implying that dust can build up quickly in massive galaxies, and that feedback is likely removing dust from low-mass galaxies at z > 7. Thus the stellar-mass - metallicity relation, previously observed up to z ~ 3, may extend out to z = 7 - 8.
    The Astrophysical Journal 10/2011; 756(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with z = 2.65, all of which have been imaged in the Lyα line with extremely deep narrow-band imaging, we examine galaxy Lyα emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Lyα emission properties. Approximately 45% (55%) of the galaxy spectra have Lyα appearing in net absorption (emission), with 20% satisfying commonly used criteria for the identification of "Lyα emitters" (LAEs; W 0(Lyα) ≥ 20 Å). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Lyα images to show that all sub-samples exhibit diffuse Lyα emission to radii of at least 10'' (~80 physical kpc). The characteristic exponential scale lengths for Lyα line emission exceed that of the λ0 = 1220 Å UV continuum light by factors of ~5-10. The surface brightness profiles of Lyα emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Lyα appears in net absorption in the spectra, exhibit qualitatively similar diffuse Lyα emission halos. Accounting for the extended Lyα emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Lyα imaging, increases the total Lyα flux (and rest equivalent width W 0(Lyα)) by an average factor of ~5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Lyα emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Lyα halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central ~1''—more luminous halos are observed for galaxies with stronger central Lyα emission. We show that whether or not a galaxy is classified as a giant "Lyα blob" (LAB) depends sensitively on the Lyα surface brightness threshold reached by an observation. Accounting for diffuse Lyα halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Lyα surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.
    The Astrophysical Journal 07/2011; 736(2):160. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a 42-orbit HST/WFC3 survey of the rest-frame optical morphologies of star forming galaxies with spectroscopic redshifts in the range z=1.5-3.6. The survey consists of 42 orbits of F160W imaging covering ~65 arcmin^2 distributed widely across the sky and reaching a depth of 27.9 AB for a 5 sigma detection within a 0.2 arcsec radius aperture. Focusing on an optically selected sample of 306 star forming galaxies with stellar masses in the range M* = 10^9 - 10^11 Msun, we find that typical circularized effective half-light radii range from ~ 0.7 - 3.0 kpc and describe a stellar mass - radius relation as early as z ~ 3. While these galaxies are best described by an exponential surface brightness profile, their distribution of axis ratios is strongly inconsistent with a population of inclined exponential disks and is better reproduced by triaxial stellar systems with minor/major and intermediate/major axis ratios ~ 0.3 and 0.7 respectively. While rest-UV and rest-optical morphologies are generally similar for a subset of galaxies with HST/ACS imaging data, differences are more pronounced at higher masses M* > 3 x 10^10 Msun. Finally, we discuss galaxy morphology in the context of efforts to constrain the merger fraction, finding that morphologically-identified mergers/non-mergers generally have insignificant differences in terms of physical observables such as stellar mass and star formation rate, although merger-like galaxies selected according to some criteria have statistically smaller effective radii and correspondingly larger SFR surface density.
    The Astrophysical Journal 07/2011; 745(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
    The Astrophysical Journal Supplement Series 05/2011; · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at $z\sim1.5-8$, and to study Type Ia SNe beyond $z>1.5$. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
    Astrophysical Journal Supplement Series - ASTROPHYS J SUPPL SER. 05/2011; 197.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with = 2.65, all of which have been imaged in the Ly-a line with extremely deep narrow-band imaging, we examine galaxy Ly-a emission profiles to very faint surface brightness limits. The galaxies are representative of spectroscopic samples of LBGs at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate, and were selected without regard to Ly-a emission properties. We use extremely deep stacks of UV continuum and Ly-a emission line images to show that all sub-samples exhibit diffuse Ly-a emission to radii of at least 10" (80 physical kpc), including galaxies whose spectra exhibit Ly-a in net absorption. The intensity scaling, but not the surface brightness distribution, is strongly correlated with the emission observed in the central ~1". The characteristic scale length for Ly-a line emission exceeds that of the UV continuum light for the same galaxies by factors of at least 5-10, regardless of the spectral morphology of Ly-a. Including the extended Ly-a halos increases the total Ly-a flux [and rest equivalent width W_0(Lya)] by an average factor of 5. We argue that most, if not all, of the observed Ly-a emission in the diffuse halos originates in the galaxy H II regions and is scattered in our direction by H I gas in the galaxy's circum-galactic medium (CGM). We show that whether or not a galaxy is classified as a giant "Lyman-a Blob" (LAB) depends sensitively on the Ly-a surface brightness threshold reached by an observation. Accounting for diffuse Ly-a halos, all LBGs would be LABs if surveys were routinely sensitive to 10 times lower surface brightness thresholds; also, essentially all LBGs would qualify as LAEs (W_0(Lya) > 20 A).
    01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of very distant galaxies probe both the formation and evolution of galaxies, and also the nature of the sources responsible for reionizing the intergalactic medium (IGM). Here, we study the physical characteristics of galaxies at 6.3 < z ≤ 8.6, selected from deep near-infrared imaging with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. We investigate the rest-frame ultraviolet (UV) colors, stellar masses, ages, metallicities, and dust extinction of this galaxy sample. Accounting for the photometric scatter using simulations, galaxies at z~ 7 have bluer UV colors compared to typical local starburst galaxies at >4σ confidence. Although the blue colors of galaxies at these redshifts necessitate young ages (<100 Myr), low or zero dust attenuation, and low metallicities, these are explicable by normal (albeit unreddened) stellar populations, with no evidence for near-zero metallicities and/or top-heavy initial mass functions. Most of these galaxies are undetected in deep Spitzer Infrared Array Camera imaging. However, the age of the universe at these redshifts limits the amount of stellar mass in late-type populations, and the WFC3 photometry implies galaxy stellar masses ~108-109 M ☉ for Salpeter initial mass functions to a limiting magnitude of M 1500 ~ –18. The masses of "characteristic" (L*) z > 7 galaxies are smaller than those of L* Lyman break galaxies at lower redshifts, and are comparable to less evolved galaxies selected on the basis of their Lyα emission at 3 < z < 6, implying that the 6.3 < z ≤ 8.6 galaxies are the progenitors of more evolved galaxies at lower redshifts. We estimate that Lyα emission is able to contribute to the observed WFC3 colors of galaxies at these redshifts, with an estimated typical line flux of 10–18 erg s–1 cm–2, roughly a factor of 4 below currently planned surveys. The integrated UV specific luminosity for the detected galaxies at z ~ 7 and z ~ 8 is within factors of a few of that required to reionize the IGM assuming low clumping factors, even with no correction for luminosity incompleteness. This implies that in order to reionize the universe, galaxies at these redshifts have a high (~50%) escape fraction of Lyman continuum photons, possibly substantiated by the very blue colors of this population.
    The Astrophysical Journal 07/2010; 719(2):1250. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasingly large samples of galaxies are now being discovered at redshifts z~5-6 and higher. Many of these objects are inferred to be young, low in mass, and relatively unreddened, but detailed analysis of their high quality spectra will not be possible until the advent of future facilities. In this paper we shed light on the physical conditions in a plausibly similar low mass galaxy by presenting the analysis of the rest-frame optical and UV spectra of Q2343-BX418, an L* galaxy at z=2.3 with a very low mass-to-light ratio and unusual properties: BX418 is young (<100 Myr), low mass (M_star ~ 10^9 Msun), low in metallicity (Z ~ 1/6 Zsun), and unreddened (E(B-V)~0.02, UV continuum slope beta=-2.1). We infer a metallicity 12+log(O/H)=7.9 +/- 0.2 from the rest-frame optical emission lines. We also determine the metallicity via the direct, electron temperature method, using the ratio O III] 1661, 1666/[O III] 5007 to determine the electron temperature and finding 12+ log(O/H)=7.8 +/- 0.1. These measurements place BX418 among the most metal-poor galaxies observed in emission at high redshift. The rest-frame UV spectrum contains strong emission from Lya (with rest-frame equivalent width 54 A), He II 1640 (both stellar and nebular), C III] 1907, 1909 and O III] 1661, 1666. The C IV/C III] ratio indicates that the source of ionization is unlikely to be an AGN. Analysis of the He II, O III] and C III] line strengths indicates a very high ionization parameter log U ~ -1, while Lya and the interstellar absorption lines indicate that outflowing gas is highly ionized over a wide range of velocities. It remains to be determined how many of BX418's unique spectral features are due to its global properties, such as low metallicity and dust extinction, and how many are indicative of a short-lived phase in the early evolution of an otherwise normal star-forming galaxy. Comment: Accepted for publication in ApJ. 28 pages, 14 figures
    The Astrophysical Journal 06/2010; · 6.73 Impact Factor

Publication Stats

3k Citations
353.44 Total Impact Points

Institutions

  • 2012–2013
    • University of California, Riverside
      • Department of Physics and Astronomy
      Riverside, California, United States
    • University of Toronto
      • Dunlap Institute for Astronomy and Astrophysics
      Toronto, Ontario, Canada
  • 2008–2012
    • National Optical Astronomy Observatory
      Tucson, Arizona, United States
  • 2011
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2003–2008
    • California Institute of Technology
      • • Department of Astronomy
      • • Spitzer Science Center
      Pasadena, California, United States
  • 2006
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, NJ, United States
  • 2005
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States