Myriam Girard

Centre Hospitalier Régional Universitaire de Nîmes, Nismes, Languedoc-Roussillon, France

Are you Myriam Girard?

Claim your profile

Publications (20)68.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The spread of microorganisms in hospitals is an important public health threat, and yet few studies have assessed how human microbial communities (microbiota) evolve in the hospital setting. Studies conducted so far have mainly focused on a limited number of bacterial species, mostly pathogenic ones and primarily during outbreaks. We explored the bacterial community diversity of the microbiota from oral and respiratory samples of intubated patients hospitalized in the intensive care unit and we discuss the technical challenges that may arise while using culture-independent approaches to study these types of samples.
    Frontiers in Cellular and Infection Microbiology 01/2014; 4:65.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Staphylococcus aureus, the role of the GGDEF domain-containing protein GdpS remains poorly understood. Previous studies reported that gdpS mutant strains had decreased biofilm formation due to changes in icaADBC expression that were independent of cyclic-di-GMP levels. We deleted gdpS in three unrelated S. aureus isolates, and analyzed the resultant mutants for alterations in biofilm formation, metabolism and transcription. Dynamic imaging during biofilm development showed that GdpS inhibited early biofilm formation in only two out of the three strains examined, without affecting bacterial survival. However, quantification of biofilm formation using crystal violet staining revealed that inactivation of gdpS affected biofilm formation in all three studied strains. Extraction of metabolites from S. aureus cells confirmed the absence of cyclic-di-GMP, suggesting that biofilm formation in this species differs from that in other Gram-positive organisms. In addition, targeted mutagenesis demonstrated that the GGDEF domain was not required for GdpS activity. Transcriptomic analysis revealed that the vast majority of GGDEF-regulated genes were involved in virulence, metabolism, cell wall biogenesis and eDNA release. Finally, expression of lrgAB or deletion of cidABC in a strain lacking gdpS confirmed the role of GdpS on regulation of eDNA production that occurred without an increase in cell autolysis, but with a late increase in holin-mediated autolysis, in the presence of high oxacillin concentrations. In summary, S. aureus GdpS contributes to cell-to-cell interactions during early biofilm formation by influencing expression of lrgAB and cidABC mediated eDNA release. We conclude that GdpS acts as a negative regulator of eDNA release.
    International Journal of Medical Microbiology 11/2013; In press. · 4.54 Impact Factor
  • Infection Genetics and Evolution 06/2013; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus clonal complex 398 is a livestock-associated pathogen that poses a worldwide threat because of its ability to colonize and infect both humans and animals. We used high-resolution whole-genome microarrays, prophage profiling, immune evasion cluster characterization and whole-genome sequencing to investigate the roles of prophages in the emerging human-adapted subpopulation of CC398 that has been associated with invasive infections in humans living in animal-free environments. We characterized one phage and two prophages specifically harbored by CC398 isolates belonging to the emerging subpopulation. We introduced the phage into permissive prophage-free isolates. We investigated the effects of lysogeny on the host ability to resist further phage infection and transformation, to acquire the capacity to invade human cells, and to express virulence factors encoded by prophages. We report evidence of a defective φMR11-like helper prophage, named StauST398-5pro, specifically associated with the emerging non-LA CC398 subpopulation. StauST398-5pro confers substantial protection against horizontal genetic transfer to its host. It interacts with a human-associated β-converting prophage encoding immune-modulating proteins such that virulence genes are expressed during stress situations. Our findings provide insight into the role of phages in the expression of virulence and in the spread of genetic information among new host-adapted S. aureus isolates. We demonstrate that functional prophage elements can condition host specificity and confer new virulence traits on emerging intra-species clones of bacteria.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 06/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In dentistry, residual infection remains a major cause of failure after endodontic treatment; many of these infections involve Enterococcus faecalis. In the current study, we explored the possibility that blue light activated photosensitizers could be used, in principle, to inactivate this microbe as an adjunct disinfection strategy for endodontic therapy. Three blue light absorbing photosensitizers, eosin-Y, rose bengal, and curcumin, were tested on E. faecalis grown in planktonic suspensions or biofilms. Photosensitizers were incubated for 30min with bacteria then exposed to blue light (450-500nm) for 240s. Sodium hypochlorite (3%) was used as a control. After 48h, the viability of E. faecalis was estimated by measuring colony-forming units post-exposure vs. untreated controls (CFU/mL). Blue light irradiation alone did not alter E. faecalis viability. For planktonic cultures, blue light activated eosin-Y (5μM), rose bengal (1μM), or curcumin (5μM) significantly (p<0.05) reduced E. faecalis viability compared to exposure to the unirradiated photochemicals. For biofilm cultures, concentrations of light-activated eosin-Y, rose bengal, and curcumin of 100, 10, and 10μM respectively, completely suppressed E. faecalis viability (p<0.05). Although the current results are limited to an in vitro model, they support further exploration of blue light activated antimicrobials as an adjunct therapy in endodontic treatment.
    Photodiagnosis and photodynamic therapy 05/2013; 10(2):134-40.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amoxicillin is a first-line antibiotic treatment for acute otitis media in children and one of the most commonly used antibiotics for human bacterial infections. We investigated changes in salivary bacterial communities among children treated with amoxicillin for acute otitis media (n = 18), using a culture-independent approach based on pyrosequencing of the V3 region of the bacterial 16S rRNA gene. The control group consisted of children with acute otitis media who were not given antibiotics (n = 15). One species-level phylotype assigned to the genus Streptococcus was identified across all (n = 99) saliva samples. Two additional species-level phylotypes from the genera Gemella and Granulicatella were shared by all (n = 45) samples of control subjects. Amoxicillin treatment resulted in reduced species richness and diversity, and a significant shift in the relative abundance of 35 taxa at different ranks from phylum to species-level phylotype. At the phylum level, prevalence of TM7 and Actinobacteria decreased at the end of treatment, whereas Proteobacteria had a higher relative abundance post-treatment. Multivariate analysis showed that samples from the same control subject taken over time intervals tended to cluster together. Among antibiotic-treated subjects, samples taken before and at the end of amoxicillin treatment formed two relatively well-separated clusters both of which greatly overlapped with samples taken about 3 weeks post-treatment. Our results point to a substantial but incomplete recovery of the salivary bacterial community from the antibiotic about 3 weeks after the end of treatment.
    Clinical Microbiology and Infection 03/2013; · 4.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Noma, or cancrum oris , is a mutilating disease affecting children in extremely limited-resource countries, suffering poor hygiene and chronic malnutrition. This devastating gangrenous disease affects the hard and soft tissues of the face. To date, the origin of the disease is still debated and current hypotheses rely on microbial diseases or on the immunologic status of the host. In an attempt to better understand the etiology of noma, the authors of the study used microarrays to assess the bacterial microbiota of gingival fluids sampled from 413 healthy and diseased children. Results obtained show reduced bacterial diversity and abundance in samples obtained from diseased patients compared to samples obtained from healthy donors, sharing identical social situation. Oral pathogens were found in both conditions but Fusobacterium necrophorum , a putative causative agent of noma, was not associated with the disease. On the other hand, no clear bacterial candidate could be identified as the etiological agent of the disease. However, a number of potential pathogens were found at higher abundance in disease patients compared to healthy donors. Finally, this study provides evidence that acute necrotizing gingivitis often evolves to noma, an observation of importance considering the dramatic condition of patients evolving to acute noma.
    PLoS Negl Trop Dis. 01/2013; 7(9):e2453.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noma (cancrum oris) is a gangrenous disease of unknown etiology affecting the maxillo-facial region of young children in extremely limited resource countries. In an attempt to better understand the microbiological events occurring during this disease, we used phylogenetic and low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis (ANG) lesions, and compared them to healthy control subjects of the same geographical and social background. Our observations raise doubts about Fusobacterium necrophorum, a previously suspected causative agent of noma, as this species was not associated with noma lesions. Various oral pathogens were more abundant in noma lesions, notably Atopobium spp., Prevotella intermedia, Peptostreptococcus spp., Streptococcus pyogenes and Streptococcus anginosus. On the other hand, pathogens associated with periodontal diseases such as Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Porphyromonas spp. and Fusobacteriales were more abundant in healthy controls. Importantly, the overall loss of bacterial diversity observed in noma samples as well as its homology to that of ANG microbiota supports the hypothesis that ANG might be the immediate step preceding noma.
    PLoS Neglected Tropical Diseases 01/2013; 7(9):e2453. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Culture-independent high-throughput sequencing-based methods are widely used to study bacterial communities. Although these approaches are superior to traditional culture-based methods, they introduce bias at the experimental and bioinformatics levels. We assessed the diversity of the human salivary microbiome by pyrosequencing of the 16S rDNA V1-3 amplicons using metagenomic DNA extracted by two different protocols: a simple proteinase K digestion without a subsequent DNA clean-up step, and a bead-beating mechanical lysis protocol followed by column DNA purification. A high degree of congruence was found between the two extraction methods, most notably in regard to the microbial community composition. The results showed that for a given bioinformatics pipeline, all the taxa with an average proportion >0.12% in samples processed using one extraction method were also detected in samples extracted using the other method. The same taxa tended to be abundant and frequent for both extraction methods. The relative abundance of sequence reads assigned to the phyla Actinobacteria, Spirochaetes, TM7, Synergistetes, and Tenericutes was significantly higher in the mechanically-treated samples than in the enzymatically-treated samples, whereas the phylum Firmicutes showed the opposite pattern. No significant differences in diversity indices were found between the extraction methods, although the mechanical lysis method revealed higher operational taxonomic unit richness. Differences between the extraction procedures outweighed the variations due to the bioinformatics analysis pipelines used.
    PLoS ONE 01/2013; 8(7):e67699. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DEAD-box RNA helicases are present in almost all living organisms and participate in various processes of RNA metabolism. Bacterial proteins of this large family were shown to be required for translation initiation, ribosome biogenesis and RNA decay. The latter is primordial for rapid adaptation to changing environmental conditions. In particular, the RhlB RNA helicase from E. coli was shown to assist the bacterial degradosome machinery. Recently, the CshA DEAD-box proteins from Bacillus subtilis and Staphylococcus aureus were shown to interact with proteins that are believed to form the degradosome. S. aureus can cause life-threatening disease, with particular concern focusing on biofilm formation on catheters and prosthetic devices, since in this form the bacteria are almost impossible to eradicate both by the immune system and antibiotic treatment. This persistent state relies on the expression of surface encoded proteins that allow attachment to various surfaces, and contrasts with the dispersal mode of growth that relies on the secretion of proteins such as hemolysins and proteases. The switch between these two states is mainly mediated by the Staphylococcal cell density sensing system encoded by agr. We show that inactivation of the cshA DEAD-box gene results in dysregulation of biofilm formation and hemolysis through modulation of agr mRNA stability. Importantly, inactivation of the agrA gene in the cshA mutant background reverses the defect, indicating that cshA is genetically upstream of agr and that a delicate balance of agr mRNA abundance mediated through stability control by CshA is critical for proper expression of virulence factors.
    RNA biology 12/2012; 10(1). · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate deep and comprehensive analysis of gut microbial communities and biological parameters after prebiotic administration in obese and diabetic mice. Genetic (ob/ob) or diet-induced obese and diabetic mice were chronically fed with prebiotic-enriched diet or with a control diet. Extensive gut microbiota analyses, including quantitative PCR, pyrosequencing of the 16S rRNA, and phylogenetic microarrays, were performed in ob/ob mice. The impact of gut microbiota modulation on leptin sensitivity was investigated in diet-induced leptin-resistant mice. Metabolic parameters, gene expression, glucose homeostasis, and enteroendocrine-related L-cell function were documented in both models. In ob/ob mice, prebiotic feeding decreased Firmicutes and increased Bacteroidetes phyla, but also changed 102 distinct taxa, 16 of which displayed a >10-fold change in abundance. In addition, prebiotics improved glucose tolerance, increased L-cell number and associated parameters (intestinal proglucagon mRNA expression and plasma glucagon-like peptide-1 levels), and reduced fat-mass development, oxidative stress, and low-grade inflammation. In high fat-fed mice, prebiotic treatment improved leptin sensitivity as well as metabolic parameters. We conclude that specific gut microbiota modulation improves glucose homeostasis, leptin sensitivity, and target enteroendocrine cell activity in obese and diabetic mice. By profiling the gut microbiota, we identified a catalog of putative bacterial targets that may affect host metabolism in obesity and diabetes.
    Diabetes 09/2011; 60(11):2775-86. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gentamicin-susceptible methicillin-resistant Staphylococcus aureus (GS-MRSA) clones have gradually replaced gentamicin-resistant MRSA (GR-MRSA) clones in many European countries. We studied molecular and epidemiological aspects of MRSA strain replacement in individual patients. All patients from whom at least 2 MRSA strains showing different gentamicin susceptibility patterns were isolated between 1996 and 2008 were retrospectively identified. Staphylococcal cassette chromosome mec (SCCmec) type and clonality between isolates were determined using molecular methods. Risk factors for individual GR-MRSA SCCmec I (prevalent clone) strain replacement with GS-MRSA non-SCCmec I types were studied in a nested case-crossover study (n = 55 patients). MRSA strain replacement was observed in 127 patients, 85 (67%) of whom were initially colonized with GR-MRSA replaced subsequently by GS-MRSA. Most GS-MRSA replacement strains (50; 59%) possessed SCCmec IV. All MRSA isolate pairs from the same patient that consisted of different gentamicin susceptibility and SCCmec types were also genotypically different. Exposure to domiciliary nursing assistance (odds ratio [OR], 8.1; 95% confidence interval [CI], 1.2 to 53.7) and high Charlson scores (OR, 7.1; 95% CI, 1.1 to 46.8) were associated with individual strain replacement. In individual patients, exogenous acquisition of a different MRSA strain was responsible for strain replacement in most cases. Domiciliary nursing assistance could be a target for specific control measures to prevent transmission of GS-MRSA in our setting.
    Journal of clinical microbiology 09/2011; 49(11):3880-4. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alternative sigma factor σ(B) of Staphylococcus aureus is involved in the coordination of the general stress response, expression of virulence determinants, and modulation of antibiotic resistance levels. It controls a large regulon, either directly by recognizing conserved σ(B) promoter sequences or indirectly via σ(B)-dependent elements. The σ(B)-controlled yabJ-spoVG operon encodes two such putative downstream elements. We report here transcriptome analysis in S. aureus Newman, showing that inactivation of the yabJ-spoVG operon had primarily a repressing effect on a small subregulon encoding mainly virulence factors, including a nuclease (nuc), a protease (splE) and a lipase (lip). As a consequence, extracellular nuclease, protease, and lipase activities were reduced in a ΔyabJ-spoVG mutant. trans-complementation by SpoVG was sufficient to restore their reduced phenotypic expression and lowered transcription due to the yabJ-spoVG deletion. It did not restore, however, the changes triggered by σ(B) inactivation, indicating that both regulons only partially overlap, despite the σ(B) dependency of the yabJ-spoVG expression. Thus, σ(B) is likely to control additional, SpoVG-independent factors affecting the expression of numerous hydrolytic enzymes. SpoVG, on the other hand, seems to fine-tune the σ(B)-dependent regulation of a subset of virulence factors by antagonizing the σ(B) effect.
    Journal of bacteriology 07/2011; 193(18):4954-62. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of daptomycin resistance in Staphylococcus aureus is associated with clinical treatment failures. The mechanism(s) of such resistance have not been clearly defined. We studied an isogenic daptomycin-susceptible (DAP(S)) and daptomycin-resistant (DAP(R)) S. aureus strain pair (616; 701) from a patient with relapsing endocarditis during daptomycin treatment, using comparative transcriptomic and proteomic techniques. Minor differences in the genome content were found between strains by DNA hybridization. Transcriptomic analyses identified a number of genes differentially expressed in important functional categories: cell division; metabolism of bacterial envelopes; and global regulation. Of note, the DAP(R) isolate exhibited reduced expression of the major cell wall autolysis gene coincident with the up-regulation of genes involved in cell wall teichoic acid production. Using quantitative (q)RT-PCR on the gene cadre putatively involved in cationic peptide resistance, we formulated a putative regulatory network compatible with microarray data sets, mainly implicating bacterial envelopes. Of interest, qRT-PCR of this same gene cadre from two distinct isogenic DAP(S)/DAP(R) clinical strain pairs revealed evidence of other strain-dependent networks operative in the DAP(R) phenotype. Comparative proteomics of 616 versus 701 revealed a differential abundance of proteins in various functional categories, including cell wall-associated targets and biofilm formation proteins. Phenotypically, strains 616 and 701 showed major differences in their ability to develop bacterial biofilms in the presence of the antibacterial lipid, oleic acid. Compatible with previous in vitro observations, in vivo-acquired DAP(R) in S. aureus is a complex, multistep phenomenon involving: (i) strain-dependent phenotypes; (ii) transcriptome adaptation; and (iii) modification of the lipid and protein contents of cellular envelopes.
    Journal of Antimicrobial Chemotherapy 05/2011; 66(8):1696-711. · 5.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes, and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system (eCB) and gut microbiota-derived compounds, namely lipopolysaccharide (LPS). We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db) by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria, and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the eCB and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression) in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the eCB and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.
    Frontiers in Microbiology 01/2011; 2:149. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the course of an annual 3-month bloodstream infections (BSI) survey conducted during a four-year period in 31 healthcare institutions located in three noncontiguous French regions, we report 18 ST398 Staphylococcus aureus BSI. ST398 BSI incidence showed a seven-fold increase during the study period (0.002 per 1,000 patient days in 2007 vs. 0.014 in 2010). ST398 BSI isolates differed from the pig-borne multiresistant clone: 17/18 BSI isolates were methicillin susceptible and none was of t011, t034 or t108 pig-borne spa-types. ST398 BSI isolates had homogenous resistance patterns (15/18 with only Ery(r)) and prophagic content (all harboured the hlb-converting Sau3int phage). The clustering of BSI and pig-borne isolates by spa-typing and MLVA, the occurrence of Sau3int phage in BSI isolates and the lack of this phage in pig-borne isolates suggest that the emergence of BSI isolates could have arisen from horizontal transfer, at least of the Sau3int phage, in genetically diverse MSSA ST398 isolates. The acquisition of the phage likely plays a role in the increasing ability of the lysogenic ST398 isolates to colonize human. The mode of acquisition of the non pig-borne ST398 isolates by our 18 patients remains unclear. ST398 BSI were diagnosed in patients lacking livestock exposure and were significantly associated with digestive portals of entry (3/18 [16.7%] for ST398 vs. 19/767 [2.5%] for non ST398 BSI; p = .012). This raises the question of possible foodborne human infections. We suggest the need for active surveillance to study and control the spread of this human-adapted subclone increasingly isolated in the hospital setting.
    PLoS ONE 01/2011; 6(12):e28369. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Le microbiote intestinal participe au développent de l’obésité, du diabète de type 2 et de l’inflammation de faible grade. Nos travaux précédents ont associé la composition du microbiote intestinal avec certains stigmates de l’obésité et du diabète de type 2 (par exemple : la masse grasse, la tolérance au glucose, l’inflammation). Nous avons montré que modifier le microbiote intestinal (par ex : augmenter Bifidobacterium spp.) d’animaux obèses avec des prébiotiques améliore l’obésité et ses désordres. Cependant, à ce jour, il n’existe aucune analyse complète et précise du microbiome dans ce contexte. Quelles sont les bactéries véritablement impliquées ? Matériels et méthodes 20 souris obèses (ob/ob) traitées 5 semaines avec ou sans prébiotiques (n = 10/groupe). Le microbiome est analysé par 4 techniques: 1e pyro-séquençage, 2e Mouse-Intestinal-CHIP-array, 3e DGGE et 4e PCR-quantitative ; toutes ses techniques sont basées sur l’analyse de l’ARN 16S-ribosomal (16SrRNA). De plus, nous avons étudiés l’homéostasie du glucose, l’inflammation, le stress oxydatif et la barrière intestinale. Résultats Les analyses multivariées (“heat-map profile”, “dendrogram”, et analyse en composantes principales) révèlent deux clusters distincts dépendant des traitements nutritionnels. Le séquençage et le microarray (soit plus de 72 000 séquences bactériennes) mettent en évidence des changements drastiques du microbiote par les prébiotiques, avec 102 séquences 16S-rRNA significativement modifiées dont 16 taxa bactériens sont changés plus de 10 fois (8 diminués et 8 augmentés). En outre les prébiotiques diminuent la perméabilité intestinale, l’inflammation, le stress oxydatif et l’intolérance au glucose, ces phénomènes sont associés à une augmentation de la différentiation des cellules souches intestinales en cellules entéroendocrines de type-L. Enfin, nous montrons de nettes corrélations entre certains paramètres métaboliques et des bactéries jusqu’alors jamais identifiées dans ce contexte. Conclusion En établissant le profil complet du microbiome de souris obèses traitées ou non avec des prébiotiques, nous avons identifiés de nouvelles cibles bactériennes qui façonnent le métabolisme de l’hôte.
    Diabetes & Metabolism - DIABETES METAB. 01/2011; 37(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial identification relies primarily on culture-based methodologies requiring 24 h for isolation and an additional 24 to 48 h for species identification. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to the problem of bacterial species identification. We evaluated two MALDI-TOF MS systems with 720 consecutively isolated bacterial colonies under routine clinical laboratory conditions. Isolates were analyzed in parallel on both devices, using the manufacturers' default recommendations. We compared MS with conventional biochemical test system identifications. Discordant results were resolved with "gold standard" 16S rRNA gene sequencing. The first MS system (Bruker) gave high-confidence identifications for 680 isolates, of which 674 (99.1%) were correct; the second MS system (Shimadzu) gave high-confidence identifications for 639 isolates, of which 635 (99.4%) were correct. Had MS been used for initial testing and biochemical identification used only in the absence of high-confidence MS identifications, the laboratory would have saved approximately US$5 per isolate in marginal costs and reduced average turnaround time by more than an 8-h shift, with no loss in accuracy. Our data suggest that implementation of MS as a first test strategy for one-step species identification would improve timeliness and reduce isolate identification costs in clinical bacteriology laboratories now.
    Journal of clinical microbiology 02/2010; 48(4):1169-75. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.
    PLoS ONE 01/2010; 5(12):e14209. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus secretes numerous exotoxins which may exhibit superantigenic properties. Whereas the virulence of several of them is well documented, their exact biological effects are not fully understood. Exotoxins may influence the immune and inflammatory state of various organs, including the sinonasal mucosa: their possible involvement in chronic rhinosinusitis has been suggested and is one of the main trends in current research. The aim of this study was to investigate whether the presence of any of the 22 currently known staphylococcal exotoxin genes could be correlated with chronic rhinosinusitis. We conducted a prospective, multi-centred European study, analysing 93 Staphylococcus aureus positive swabs taken from the middle meatus of patients suffering from chronic rhinosinusitis, with or without nasal polyposis, and controls. Strains were systematically tested for the presence of the 22 currently known exotoxin genes and genotyped according to their agr groups. No direct correlation was observed between chronic rhinosinusitis, with or without nasal polyposis, and either agr groups or the presence of the most studied exotoxins genes (egc, sea, seb, pvl, exfoliatins or tsst-1). However, genes for enterotoxins P and Q were frequently observed in nasal polyposis for the first time, but absent in the control group. The number of exotoxin genes detected was not statistically different among the 3 patient groups. Unlike many previous studies have been suggesting, we did not find any evident correlation between staphylococcal exotoxin genes and the presence or severity of chronic rhinosinusitis with or without nasal polyposis.
    PLoS ONE 01/2010; 5(3):e9525. · 3.53 Impact Factor

Publication Stats

295 Citations
68.77 Total Impact Points

Institutions

  • 2013
    • Centre Hospitalier Régional Universitaire de Nîmes
      Nismes, Languedoc-Roussillon, France
  • 2011
    • Royal Prince Alfred Hospital
      • Division of Infectious Diseases & Microbiology
      Camperdown, New South Wales, Australia
    • Universität des Saarlandes
      • Institut für Medizinische Mikrobiologie und Hygiene
      Saarbrücken, Saarland, Germany
  • 2010–2011
    • University of Geneva
      • Division of Infectious Diseases
      Genève, Geneva, Switzerland
    • University of Groningen
      • Groningen Biomolecular Sciences and Biotechnology Institute (GBB)
      Groningen, Province of Groningen, Netherlands