Milena Botelho Pereira Soares

Hospital São Rafael, Bahia, Bahia, Brazil

Are you Milena Botelho Pereira Soares?

Claim your profile

Publications (156)520.02 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3, a β-galactoside binding lectin, has been described as a mediator of cardiac fibrosis in experimental studies and as a risk factor associated with cardiovascular events in subjects with heart failure. Previous studies have evaluated the genetic susceptibility to Chagas disease in humans, including the polymorphisms of cytokine genes, demonstrating correlations between the genetic polymorphism and cardiomyopathy development in the chronic phase. However, the relationship between the galectin-3 single nucleotide polymorphism (SNP) and phenotypic variations in Chagas disease has not been evaluated. The present study aimed to determine whether genetic polymorphisms of galectin-3 may predispose to the development of cardiac forms of Chagas disease. Fifty-five subjects with Chagas disease were enrolled in this observational study. Real-time polymerase chain reaction (PCR) was used for genotyping the variants rs4644 and rs4652 of the galectin-3 gene. For the SNP rs4644, the relative risk for the cardiac form was not associated with the genotypes AA (OR = 0.79, p = 0.759), AC (OR = 4.38, p = 0.058), or CC (OR = 0.39, p = 0.127). Similarly, for the SNP rs4652, no association was found between the genotypes AA (OR = 0.64, p = 0.571), AC (OR = 2.85, p = 0.105), or CC (OR = 0.49, p = 0.227) and the cardiac form of the disease. Our results showed no association between the different genotypes for both SNPs of the galectin-3 gene and the cardiac form of Chagas disease. (Arq Bras Cardiol. 2015; [online].ahead print, PP.0-0).
    Arquivos Brasileiros de Cardiologia 08/2015; DOI:10.5935/abc.20150105 · 1.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main pathogenic event caused by Schistosoma mansoni infection is characterized by a granulomatous inflammatory reaction around parasite eggs and fibrosis in the liver. We have previously shown that transplantation of bone marrow cells (BMC) promotes a reduction in liver fibrosis in chronically S. mansoni-infected mice. Here we investigated the presence and phenotype of bone marrow-derived cells in livers of S. mansoni-infected mice. During the chronic phase of infection, C57BL/6 mice had an increased number of circulating mesenchymal stem cells and endothelial progenitor cells in the peripheral blood when compared to uninfected controls. In order to investigate the fate of BMC in the liver, we generated bone marrow chimeric mice by transplanting BMC from transgenic green fluorescent protein (GFP) mice into lethally irradiated wild-type C57BL/6 mice. S. mansoni-infected chimeric mice did not demonstrate increased mortality and developed similar liver histopathological features, when compared to wild-type S. mansoni-infected mice. GFP(+) bone marrow-derived cells were found in the liver parenchyma, particularly in periportal regions. CD45(+)GFP(+) cells were found in the granulomas. Flow cytometry analysis of digested liver tissue characterized GFP(+) cells as lymphocytes, myeloid cells and stem cells. GFP(+) cells were also found in areas of collagen deposition, although rare GFP(+) cells expressed the myofibroblast cell marker α-SMA. Additionally GFP(+) endothelial cells (co-stained with von Willebrand factor) were frequently observed, while BMC-derived hepatocytes (GFP(+) albumin(+) cells) were sparsely found in the liver of chimeric mice chronically infected with S. mansoni. In conclusion, BMC are recruited to the liver during chronic experimental infection with S. mansoni and contribute to the generation of different cell types involved, not only in disease pathogenesis, but possibly in liver regeneration and repair. Copyright © 2015. Published by Elsevier Inc.
    Experimental Parasitology 08/2015; DOI:10.1016/j.exppara.2015.08.005 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duguetia gardneriana, popularly known in the Brazilian northeast as "jaquinha", is a species belonging to the family Annonaceae. The aim of this work was to assess the chemical composition and antitumor properties of the essential oil from the leaves of D. gardneriana in experimental models. The chemical composition of the essential oil was analyzed via gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. In vitro cytotoxic activity was determined in cultured tumor cells, and in vivo antitumor activity was assessed in B16-F10-bearing mice. The identified compounds were β-bisabolene (80.99 %), elemicin (8.04 %), germacrene D (4.15 %), and cyperene (2.82 %). The essential oil exhibited a cytotoxic effect, with IC50 values of 16.89, 19.16, 13.08, and 19.33 µg/mL being obtained for B16-F10, HepG2, HL-60, and K562 cell lines, respectively. On the other hand, β-bisabolene was inactive in all of the tested tumor cell lines (showing IC50 values greater than 25 µg/mL). The in vivo analysis revealed tumor growth inhibition rates of 5.37-37.52 % at doses of 40 and 80 mg/kg/day, respectively. Herein, the essential oil from the leaves of D. gardneriana presented β-bisabolene as the major constituent and showed cytotoxic and antitumor potential. Georg Thieme Verlag KG Stuttgart · New York.
    Planta Medica 06/2015; 81(10). DOI:10.1055/s-0035-1546130 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most challenging issues of chronic Chagas disease is to provide earlier detection of heart involvement. Two-dimensional speckle tracking (2-D ST) echocardiography, a new imaging modality with useful applications in several cardiac diseases, has been validated for subjects with myocardial infarction against cardiac magnetic resonance (CMR). Here we hypothesize that the longitudinal global strain (LGS) has an incremental value to ejection fraction for predicting myocardial fibrosis in subjects with Chagas disease.
    05/2015; 95. DOI:10.1016/j.ijcha.2015.05.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present work reports the synthesis and evaluation of the antitumour and immunomodulatory properties of new phthalimides derivatives designed to explore molecular hybridization and bioisosterism approaches between thalidomide, thiosemicarbazone, thiazolidinone and thiazole series. Twenty-seven new molecules were assessed for their immunosuppressive effect toward TNFα, IFNγ, IL-2 and IL-6 production and antiproliferative activity. The best activity profile was observed for the (6a-f) series, which presents phthalyl and thiazolidinone groups. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    European Journal of Medicinal Chemistry 04/2015; 96:491-503. DOI:10.1016/j.ejmech.2015.04.041 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pain corresponds to the most frequent reason for visits to physicians, and its control by conventional drugs is accompanied by several side effects, making treatment difficult. For this reason, new chemical entities derived from natural products still hold great promise for the future of drug discovery to pain treatment. The objective of this study was to evaluate the antinociceptive and anti-inflammatory profiles of p-cymene (PC), a monocyclic monoterpene, and its possible mechanisms of action. Mice treated acutely with PC (25, 50, or 100 mg/kg, i.p.) were screened for carrageenan-induced hyperalgesia and the inflammatory components of its cascade (30-180 min), carrageenan-induced pleurisy (4 h), and tail-flick test (1-8 h). Also, we observed the PC effect on the generation of nitric oxide by macrophages and the activation of neurons in the periaqueductal gray (PAG) by immunofluorescence. PC reduced (p < 0.001) the hyperalgesia induced by carrageenan, TNF-α, dopamine, and PGE2. PC decrease total leukocyte migration (100 mg/kg: p < 0.01), neutrophils (50 and 100 mg/kg: p < 0.05 and 0.001), and TNF-α (25, 50, and 100 mg/kg: p < 0.01, 0.05, and 0.001, respectively), besides reducing NO production (p < 0.05) in vitro. PC produced antinociceptive effect in tail-flick test (p < 0.05), which was antagonized by naloxone, naltrindole, nor-BNI, and CTOP, and increased (p < 0.001) the number of c-Fos-immunoreactive neurons in PAG. These results provide information about the anti-hyperalgesic and anti-inflammatory properties of PC suggesting a possible involvement of the opioid system and modulating some pro-inflammatory cytokines.
    Pharmaceutical Biology 04/2015; DOI:10.3109/13880209.2014.993040 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Pain corresponds to the most frequent reason for visits to physicians, and its control by conventional drugs is accompanied by several side effects, making treatment difficult. For this reason, new chemical entities derived from natural products still hold great promise for the future of drug discovery to pain treatment. Objective: The objective of this study was to evaluate the antinociceptive and anti-inflammatory profiles of p-cymene (PC), a monocyclic monoterpene, and its possible mechanisms of action. Materials and methods: Mice treated acutely with PC (25, 50, or 100 mg/kg, i.p.) were screened for carrageenan-induced hyperalgesia and the inflammatory components of its cascade (30–180 min), carrageenan-induced pleurisy (4 h), and tail-flick test (1–8 h). Also, we observed the PC effect on the generation of nitric oxide by macrophages and the activation of neurons in the periaqueductal gray (PAG) by immunofluorescence. Results: PC reduced (p < 0.001) the hyperalgesia induced by carrageenan, TNF-α, dopamine, and PGE2. PC decrease total leukocyte migration (100 mg/kg: p < 0.01), neutrophils (50 and 100 mg/kg: p < 0.05 and 0.001), and TNF-α (25, 50, and 100 mg/kg: p < 0.01, 0.05, and 0.001, respectively), besides reducing NO production (p < 0.05) in vitro. PC produced antinociceptive effect in tail-flick test (p < 0.05), which was antagonized by naloxone, naltrindole, nor-BNI, and CTOP, and increased (p < 0.001) the number of c-Fos-immunoreactive neurons in PAG. Discussion and conclusion: These results provide information about the anti-hyperalgesic and anti-inflammatory properties of PC suggesting a possible involvement of the opioid system and modulating some pro-inflammatory cytokines.
    Pharmaceutical Biology 04/2015; 53:1. · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zornia brasiliensis, popularly known as "urinária", "urinana", and "carrapicho", is a medicinal plant used in Brazilian northeast folk medicine as a diuretic and against venereal diseases. The aim of this study was to investigate the chemical composition and antitumor potential of the leaf essential oil of Z. brasiliensis. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Its composition was characterized by the presence of trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents. In vitro cytotoxicity of the essential oil and some of its major constituents (trans-nerolidol, trans-caryophyllene, and α-humulene) was evaluated for tumor cell lines from different histotypes using the Alamar blue assay. The essential oil, but not the constituents tested, presented promising cytotoxicity. Furthermore, mice inoculated with B16-F10 mouse melanoma were used to confirm its in vivo effectiveness. An in vivo antitumor study showed tumor growth inhibition rates of 1.68-38.61 % (50 and 100 mg/kg, respectively). In conclusion, the leaf essential oil of Z. brasiliensis presents trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents and is able to inhibit cell proliferation in cultures as well as in tumor growth in mice. Georg Thieme Verlag KG Stuttgart · New York.
    Planta Medica 04/2015; 81:563. DOI:10.1055/s-0035-1545842 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we describe the trypanocidal and antimalarial activities from essential oils extracted from Annona vepretorum (AVOE) and Annona squamosa (ASOE) (Annonaceae) leaves. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC–MS) and GC–flame ionization detection (GC–FID). A total of twenty-one compounds were identified in AVOE and twenty-three in ASOE. The sesquiterpenes are more abundant in the both essential oils. ASOE contained significant quantities of (E)-caryophyllene (27.4%), germacrene D (17.1%) and bicyclogermacrene (10.8%). The major compounds in AVOE were bicyclogermacrene (39.0%), spathulenol (14.0%) and α-phellandrene (11.5%). The essential oils demonstrated potent trypanocidal and antimalarial activities with values of IC50 lower than 20 μg/mL, and a strong inhibition of the proliferation of amastigotes, the clinically relevant forms of Trypanosoma cruzi. In addition, through ultrastructural studies and flow cytometry analysis with trypomastigotes of T. cruzi, we identified significant ultrastructural alterations induced by the essential oils, especially in the cell membrane and mitochondria, which ultimately results in necrotic parasite death.
    Journal of Essential Oil Research 03/2015; 27(2). DOI:10.1080/10412905.2014.982876 · 0.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract This study reports on the design, synthesis and antiparasitic activity of three new semi-synthetic naphthoquinones structurally related to the naturally-occurring lapachol and lapachone. Of the compounds tested, 3-(3-methylbut-1-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (1) was the most active against Plasmodium falciparum among both natural and semi-synthetic naphthoquinones, showing potent and selective activity. Compound 1 was able to reduce the in vitro parasite burden, in vitro parasite cell cycle, as well as the blood parasitemia in Plasmodium berghei-infected mice. More importantly, infection reduction under compound 1-treatment was achieved without exhibiting mouse genotoxicity. Regarding the molecular mechanism of action, this compound inhibited the hemozoin crystal formation in P. falciparum treated cells, and this was further confirmed by observing that it inhibits the β-hematin polymerization process similarly to chloroquine. Interestingly, this compound did not affect either mitochondria structure or cause DNA fragmentation in parasite treated cells. In conclusion, we identified a semi-synthetic antimalarial naphthoquinone closely related to isolapachol, which had stronger antimalarial activity than lapachol.
    Journal of Enzyme Inhibition and Medicinal Chemistry 11/2014; DOI:10.3109/14756366.2014.958083 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The administration of stem cells holds promise as a potential therapy for spinal cord injury (SCI). Mesenchymal stem cells have advantages for clinical applications, since they can be easily obtained, are suitable for autologous transplantation and have been previously shown to induce regeneration of the spinal cord in experimental settings. Here we evaluated the feasibility, safety and potential efficacy of autologous transplantation of mesenchymal stem cells in subjects with chronic complete SCI. We conducted a phase I, non-controlled study in 14 subjects of both genders aging between 18 to 65 years, with chronic traumatic SCI (>6 months), at thoracic or lumbar levels, classified as American spinal injury association (ASIA) A - complete injury. Baseline somatosensory evoked potentials (SSEP), spinal magnetic resonance imaging (MRI) and urodynamics were assessed before and after treatment. Pain rating was performed using the McGill Pain Questionnaire and a visual analogue score scale. Bone marrow-derived mesenchymal stem cells were cultured and characterized by flow cytometry, cell differentiation assays and G-band karyotyping. Mesenchymal stem cells were injected directly into the lesion following laminectomy and durotomy. Cell transplantation was an overall safe and well-tolerated procedure. All subjects displayed variable improvements in tactile sensitivity and eight subjects developed lower limbs motor functional gains, principally in the hip flexors. Seven subjects presented sacral sparing and improved American spinal injury association impairment scale (AIS) grades to B or C - incomplete injury. Nine subjects had improvements in urologic function. One subject presented changes in SSEP 3 and 6 months after mesenchymal stem cells transplantation. Statistically significant correlations between the improvements in neurological function and both injury size and level were found. Intralesional transplantation of autologous mesenchymal stem cells in subjects with chronic, complete spinal cord injury is safe, feasible, and may promote neurological improvements.Trial registration: ClinicalTrials.gov NCT01325103 - Registered 28 March 2011.
    Stem Cell Research & Therapy 11/2014; 5(6):126. DOI:10.1186/scrt516 · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pain is the most common reason a patient sees a physician. Nevertheless, the use of typical painkillers is not completely effective in controlling all pain syndromes; therefore further attempts have been made to develop improved analgesic drugs. The present study was undertaken to evaluate the antinociceptive properties of physalins B (1), D (2), F (3), and G (4) isolated from Physalis angulata in inflammatory and centrally mediated pain tests in mice. Systemic pretreatment with 1-4 produced dose-related antinociceptive effects on the writhing and formalin tests, traditional screening tools for the assessment of analgesic drugs. On the other hand, only 3 inhibited inflammatory parameters such as hyperalgesia, edema, and local production of TNF-α following induction with complete Freund's adjuvant. Treatment with 1, 3, and 4 produced an antinociceptive effect on the tail flick test, suggesting a centrally mediated antinociception. Reinforcing this idea, 2-4 enhanced the mice latency reaction time during the hot plate test. Mice treated with physalins did not demonstrate motor performance alterations. These results suggest that 1-4 present antinociceptive properties associated with central, but not anti-inflammatory, events and indicate a new pharmacological property of physalins.
    Journal of Natural Products 11/2014; 77(11). DOI:10.1021/np5003093 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Betulinic acid (BA) is a lupane-type triterpene with a number of biological activities already reported. While potent anti-HIV and antitumoral activities were attributed to BA, it is considered to have a moderate anti-inflammatory activity. Here we evaluated the effects of BA in a mouse model of endotoxic shock. Endotoxemia was induced through intraperitoneally LPS administration, nitric oxide (NO) and cytokines were assessed by Griess method and ELISA, respectively. Treatment of BALB/c mice with BA at 67mg/kg caused a 100% survival against a lethal dose of lipopolysaccharide (LPS). BA treatment caused a reduction in TNF-α production induced by LPS but did not alter IL-6 production. Moreover, BA treatment increased significantly the serum levels of IL-10 compared to vehicle-treated, LPS-challenged mice. To investigate the role of IL-10 in BA-induced protection, wild-type and IL-10(-/-) mice were studied. In contrast to the observations in IL-10(+/+) mice, BA did not protect IL-10(-/-) mice against a lethal LPS challenge. Addition of BA inhibited the production of pro-inflammatory mediators by macrophages stimulated with LPS, while promoting a significant increase in IL-10 production. BA-treated peritoneal exudate macrophages produced lower concentrations of TNF-α and NO and higher concentrations of IL-10 upon LPS stimulation. Similarly, macrophages obtained from BA-treated mice produced less pro-inflammatory mediators and increased IL-10 when compared to non-stimulated macrophages obtained from vehicle-treated mice. In conclusion, we have shown that BA has a potent anti-inflammatory activity in vivo, protecting mice against LPS by modulating TNF-α production by macrophages in vivo through a mechanism dependent on IL-10.
    International Immunopharmacology 09/2014; 23(2). DOI:10.1016/j.intimp.2014.09.021 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: cis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.
    Antimicrobial Agents and Chemotherapy 08/2014; 58(10). DOI:10.1128/AAC.02765-14 · 4.45 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guatteria blepharophylla Mart. (synonym Guatteriopsis blepharophylla Mart.) and Guatteria hispida (R.E. Fr.) Erkens & Maas (synonym Guatteriopsis hispida R.E. Fr.) belong to the Annonaceae family and are found in the Brazilian and Colombian Amazon basin. Both species are popularly known as ‘envira’ or ‘envireira’. In the present study, the leaf essential oils of G. blepharophylla (EOGB) and G. hispida (EOGH) were selected to investigate their cytotoxic effects. Tumour cell lines were treated with increasing concentrations of both essential oils for 72 h and analysed by a methyl-[3H]thymidine incorporation assay. The pro-apoptotic effect of these essential oils was assessed in HepG2 cells by morphological analysis (using haematoxylin/eosin staining and acridine orange/ethidium bromide staining), flow cytometry (cell membrane integrity and internucleosomal DNA fragmentation analysis) and a caspase-3 activation assay after 24 h incubation. Both essential oils displayed potent cytotoxicity in different tumour cell lines. EOGB showed IC50 values from 6.03 to 16.46 µg/ml for HepG2 and K562 cell lines, and EOGH showed IC50 values from 5.45 to 24.89 µg/ml for HepG2 and K562 cell lines, respectively. Cell morphologies consistent with apoptosis and a remarkable activation of caspase-3 were observed in the HepG2 cells treated with essential oils for 24 h. Significant increases in internucleosomal DNA fragmentation without altered membrane integrity were also found. In conclusion, both essential oils investigated were able to inhibit tumour cell proliferation and induce cell death by apoptosis pathways. Copyright © 2014 John Wiley & Sons, Ltd.
    Flavour and Fragrance Journal 07/2014; 29(4). DOI:10.1002/ffj.3199 · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction New therapeutic options are necessary for patients with chronic Chagas disease, a leading cause of heart failure in Latin American countries. Stem cell therapy focused on improving cardiac function is a promising approach for treating heart disease. Here, we evaluated the therapeutic effects of cardiac mesenchymal stem cells (CMSCs) in a mouse model of chronic Chagas disease. Methods CMSCs were isolated from green fluorescent protein (GFP) transgenic C57BL/6 mouse hearts and tested for adipogenic, osteogenic, chondrogenic, endothelial, and cardiogenic differentiation potentials evaluated by histochemical and immunofluorescence techniques. A lymphoproliferation assay was performed to evaluate the immunomodulatory activity of CMSCs. To investigate the therapeutic potential of CMSCs, C57BL/6 mice chronically infected with Trypanosoma cruzi were treated with 106 CMSCs or saline (control) by echocardiography-guided injection into the left ventricle wall. All animals were submitted to cardiac histopathological and immunofluorescence analysis in heart sections from chagasic mice. Analysis by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was performed in the heart to evaluate the expression of cytokines involved in the inflammatory response. Results CMSCs demonstrated adipogenic, osteogenic, and chondrogenic differentiation potentials. Moreover, these cells expressed endothelial cell and cardiomyocyte features upon defined stimulation culture conditions and displayed immunosuppressive activity in vitro. After intramyocardial injection, GFP+ CMSCs were observed in heart sections of chagasic mice one week later; however, no observed GFP+ cells co-expressed troponin T or connexin-43. Histopathological analysis revealed that CMSC-treated mice had a significantly decreased number of inflammatory cells, but no reduction in fibrotic area, two months after treatment. Analysis by qRT-PCR demonstrated that cell therapy significantly decreased tumor necrosis factor-alpha expression and increased transforming growth factor-beta in heart samples. Conclusions We conclude that the CMSCs exert a protective effect in chronic chagasic cardiomyopathy primarily through immunomodulation.
    Stem Cell Research & Therapy 07/2014; 5(4):81. DOI:10.1186/scrt470 · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In earlier studies, we reported that a heterologous prime-boost regimen using recombinant plasmid DNA followed by replication-defective adenovirus vector, both containing Trypanosoma cruzi genes encoding trans-sialidase (TS) and amastigote surface protein (ASP) 2, provided protective immunity against experimental infection with a reticulotropic strain of this human protozoan parasite. Herein, we tested the outcome of genetic vaccination of F1 (CB10XBALB/c) mice challenged with myotropic parasite strains (Brazil and Colombian). Initially, we determined that the coadministration during priming of a DNA plasmid containing the murine IL-12 gene improved the immune response and was essential for protective immunity elicited by the heterologous prime-boost regimen in susceptible male mice against acute lethal infections with these parasites. The prophylactic or therapeutic vaccination of resistant female mice led to a drastic reduction in the number of inflammatory infiltrates in cardiac and skeletal muscles during the chronic phase of infection with either strain. Analysis of the electrocardiographic parameters showed that prophylactic vaccination reduced the frequencies of sinus arrhythmia and atrioventricular block. Our results confirmed that prophylactic vaccination using the TS and ASP-2 genes benefits the host against acute and chronic pathologies caused by T. cruzi and should be further evaluated for the development of a veterinary or human vaccine against Chagas disease.
    Mediators of Inflammation 06/2014; 2014:605023. DOI:10.1155/2014/605023 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work describes a novel ent-kaurane diterpene, ent-3β-hydroxy-kaur-16-en-19-al along with five known ent-kaurane diterpenes, ent-3β,19-dihydroxy-kaur-16-eno, ent-3β-hydroxy-kaur-16-eno, ent-3β-acetoxy-kaur-16-eno, ent-3β-hydroxy-kaurenoic acid and kaurenoic acid, as well as caryophyllene oxide, humulene epoxide II, β-sitosterol, stigmasterol and campesterol from the stem bark of Annona vepretorum Mart. (Annonaceae). Cytotoxic activities towards tumor B16-F10, HepG2, K562 and HL60 and non-tumor PBMC cell lines were evaluated for ent-kaurane diterpenes. Among them, ent-3β-hydroxy-kaur-16-en-19-al was the most active compound with higher cytotoxic effect over K562 cell line (IC50 of 2.49μg/mL) and lower over B16-F10 cell line (IC50 of 21.02μg/mL).
    Bioorganic & Medicinal Chemistry Letters 06/2014; 24(15). DOI:10.1016/j.bmcl.2014.06.005 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hecogenin is a steroidal sapogenin largely drawn from the plants of the genus Agave, commonly known as 'sisal', and is one of the important precursors used by the pharmaceutical industry for the synthesis of steroid hormones. Hecogenin acetate (HA) is a steroidal sapogenin-acetylated that produces antinociceptive activity. Thus, we evaluate the antihyperalgesic profile of HA in mice in inflammatory models, as well as its possible involvement with c-fos expression on spinal cord area and cytokines to produces analgesic profile. Acute pretreatment with HA (5, 10, or 20 mg/kg; i.p.) inhibited the development of mechanical hyperalgesia induced by carrageenan, TNF-α, dopamine and PGE2. Additionally, the immunofluorescence data demonstrated that acute pretreatment with HA, at all doses tested, significantly inhibited Fos-like expression in the spinal cord dorsal horn normally observed after carrageenan-inflammation. Moreover, HA did not affect the motor performance of the mice as tested in the Rota rod test. This antinociceptive profile seems to be related, at least in part, to a reduction of pro-inflammatory cytokines, as IL-1β. The present results suggest that HA attenuates mechanical hyperalgesia by blocking the neural transmission of pain at the spinal cord levels and by cytokines-inhibitory mechanisms.
    Molecules 06/2014; 19(6):8303-8316. DOI:10.3390/molecules19068303 · 2.42 Impact Factor

Publication Stats

2k Citations
520.02 Total Impact Points

Institutions

  • 2009–2015
    • Hospital São Rafael
      • Centro de Biotecnologia e Terapia Celular (CBC)
      Bahia, Bahia, Brazil
  • 2001–2015
    • Fundação Oswaldo Cruz
      Rio de Janeiro, Rio de Janeiro, Brazil
    • Colorado State University
      • College of Veterinary Medicine and Biomedical Sciences
      Fort Collins, CO, United States
  • 2014
    • CEP America
      Emeryville, California, United States
  • 2013
    • Universidade Estadual de Feira de Santana
      Feira de Sant'Anna, Estado de Bahía, Brazil
    • Universidade Estadual de Santa Cruz
      São Jorgé dos Ilhéos, Bahia, Brazil
  • 1997–2013
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2012
    • Universidade Federal da Bahia
      Bahia, Estado de Bahía, Brazil
  • 2011
    • Irmandade da Santa Casa da Misericórdia de Santos
      Santos, São Paulo, Brazil
  • 2002–2007
    • Federal University of Rio de Janeiro
      • Instituto de Biofísica Carlos Chagas Filho (IBCCF)
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 2005
    • Fundação Salvador Arena
      San Paulo, São Paulo, Brazil
  • 2003
    • Hospital Aliança
      Bahia, Estado de Bahía, Brazil