Mary K Walker

University of New Mexico, Albuquerque, New Mexico, United States

Are you Mary K Walker?

Claim your profile

Publications (46)145.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Impaired flow-mediated dilation (FMD) occurs prior to clinical disease in young cigarette smokers. We investigated two potential biomarkers of FMD: serum aryl hydrocarbon receptor (AHR) activity and RBC omega-3 polyunsaturated fatty acids in healthy young Hispanic cigarette smokers. We recruited never (n=16) and current (n=16) Hispanic smokers (32±7 years old), excluding individuals with clinical cardiovascular disease. We measured FMD with duplex ultrasound, RBC fatty acids and serum AHR activity using a luciferase reporter assay. FMD was significantly impaired in smokers (5.8±4%) versus never smokers (12.3±7.4%, p=0.001). Serum AHR activity was significantly increased in smokers (1467±358 relative light units (RLU)) versus never smokers (689±251 RLU, p<0.001), and correlated positively with FMD only in smokers (r=0.691, p<0.004). RBC percentage of α-linolenic acid (ALA%) was significantly increased in smokers (0.14±0.03%) versus never smokers (0.11±0.03%, p=0.018), and correlated inversely with FMD only in smokers (r=-0.538, p=0.03). The combination of serum AHR activity, ALA%, and systolic blood pressure significantly correlated with FMD in a multivariable regression model (r=0.802, p<0.008). These results suggest that serum AHR activity and RBC ALA% could serve as biomarkers of FMD in healthy, young Hispanic cigarette smokers. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Toxicology Letters 12/2014; 232(2). DOI:10.1016/j.toxlet.2014.12.002 · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P4501A1 (CYP1A1) efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for eight weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared to KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs.
    Journal of Pharmacology and Experimental Therapeutics 10/2014; 351(3). DOI:10.1124/jpet.114.219535 · 3.97 Impact Factor
  • Fredine T Lauer · Mary K Walker · Scott W Burchiel
    [Show abstract] [Hide abstract]
    ABSTRACT: Dibenzo[def,p]chrysene (DBC) is a potent environmental carcinogen in rodents, fish, and human cells examined in culture. There are numerous similarities between the patterns of cytochrome P-450 (P450) activation of DBC and its covalent binding to DNA and proteins with another polycyclic aromatic hydrocarbon (PAH), 7,12-dimethylbenz[a]anthracene (DMBA). Our lab has previously shown that DMBA produces immunosuppression in rodents and human cell systems. Therefore, the purpose of these studies was to examine the immunotoxicity of DBC in a rodent model that was found to be sensitive to the immunosuppressive effects of DMBA. Data showed that DBC had similar potency to DMBA in producing suppression of a T-dependent antibody response (TDAR) and altered spleen cell subsets in a similar manner as DMBA when DMBA was given by gavage for 5 d in corn oil to mice at doses of 1-100 mg/kg total cumulative doses. T-cell-independent antigen (TNP-Ficoll) responses were quantitatively less sensitive to DBC suppression. It was also found that as with DMBA, DBC produced a persistent immunosuppression, which lasted for at least 4 wk following dosing with a novel pill method for self-administration of DBC. In conclusion, DBC appears to possess many of the same characteristics of DMBA in terms of its immunotoxicity.
    Journal of Toxicology and Environmental Health Part A 01/2013; 76(1):16-24. DOI:10.1080/15287394.2012.722521 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential tissue hypoxia drives normal cardiogenic events including coronary vessel development. This requirement renders cardiogenic processes potentially susceptible to teratogens that activate a transcriptional pathway that intersects with the hypoxia-inducible factor (HIF-1) pathway. The potent toxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to cause cardiovascular defects by way of reduced myocardial hypoxia, inhibition of angiogenic stimuli, and alterations in responsiveness of endothelial cells to those stimuli. Our working hypothesis is that HIF-1 levels and thus HIF-1 signaling in the developing myocardium will be reduced by TCDD treatment in vivo during a critical stage and in particularly sensitive sites during heart morphogenesis. This inadequate HIF-1 signaling will subsequently result in outflow tract (OFT) and coronary vasculature defects. Our current data using the chicken embryo model showed a marked decrease in the intensity of immunostaining for HIF-1α nuclear expression in the OFT myocardium of TCDD-treated embryos. This area at the base of the OFT is particularly hypoxic during normal development; where endothelial cells initially form a concentrated anastomosing network known as the peritruncal ring; and where the left and right coronary arteries eventually connect to the aortic lumen. Consistent with this finding, anomalies of the proximal coronaries were detected after TCDD treatment and HIF-1α protein levels decreased in a TCDD dose-dependent manner.
    Cardiovascular toxicology 12/2012; 13(2). DOI:10.1007/s12012-012-9194-7 · 1.72 Impact Factor
  • Larry N Agbor · Mary T Walsh · Jason R Boberg · Mary K Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega-3 polyunsaturated fatty acids (n-3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n-3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice±NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA±inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mmHg, WT 103±1, KO 116±1, n=5/genotype, p<0.05), and exhibited a reduced heart rate (beats per minute, WT 575±5; KO 530±7; p<0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n-3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP.
    Toxicology and Applied Pharmacology 09/2012; 264(3):351-60. DOI:10.1016/j.taap.2012.09.007 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuously for 5h after treatment, and feces collected 6-10h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5h, while MAP returned to normal within 2h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2-5h post dosing. MAP and heart rate did not differ 24h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic-pituitary-adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage.
    Toxicology and Applied Pharmacology 02/2012; 260(1):65-9. DOI:10.1016/j.taap.2012.01.025 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous estrogens mediate protective effects in the cardiovascular system, affecting both endothelium-dependent and endothelium-independent mechanisms. Previous studies have suggested that nonselective estrogen receptor agonists such as endogenous estrogens inhibit endothelium-dependent vasoconstriction; however, the role of estrogen receptors in this response has not yet been clarified. This study investigated whether the intracellular transmembrane G protein-coupled estrogen receptor (GPER) regulates vascular reactivity in mice. Effects of chronic deficiency (using mice lacking the GPER gene) and acute inhibition (using the GPER-selective antagonist G15) on endothelium-dependent and endothelium-independent vascular reactivity, and the effects of GPER deficiency on vascular gene expression and structure were investigated. We found that chronic GPER deficiency is associated with increased endothelial prostanoid-mediated vasoconstriction but has no effect on endothelial nitric oxide bioactivity, gene expression of endothelial nitric oxide synthase and thromboxane prostanoid (TP) receptor, or vascular structure. GPER deletion also increases TP receptor-mediated contraction. Acute GPER blockade enhances endothelium-dependent contractions and reduces endothelial nitric oxide bioactivity. Contractions in response to TP receptor activation are unaffected by G15. In conclusion, this study identifies GPER as the first estrogen receptor with inhibitory activity on endothelium-dependent contractility. These findings may be important for understanding and treating diseases associated with increased endothelial vasoconstrictor prostanoid activity such as hypertension and obesity.
    Hypertension 12/2011; 59(2):507-12. DOI:10.1161/HYPERTENSIONAHA.111.184606 · 6.48 Impact Factor
  • Jason A. Scott · Mary K. Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter contains sections titled: IntroductionBackground: Cardiovascular PhysiologyLocalization of AHR in the Cardiovascular SystemRole of AHR in Cardiovascular System: Insights from Genetic Mouse ModelsRole of AHR in SS and Potential SS-Induced Endogenous AHR LigandsInfluence of Exogenous Ligands on AHR Function in the Cardiovascular SystemConclusions References
    The AH Receptor in Biology and Toxicology, 11/2011: pages 423-436; , ISBN: 9780470601822
  • Larry N. Agbor · Mary T. Walsh · Mary K. Walker
    Scientific Sessions of High Blood Pressure Research; 11/2011
  • Source
    Larry N Agbor · Khalid M Elased · Mary K Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypotension in aryl hydrocarbon receptor knockout mice (ahr(-/-)) is mediated, in part, by a reduced contribution of angiotensin (Ang) II to basal blood pressure (BP). Since AHR is highly expressed in endothelial cells (EC), we hypothesized that EC-specific ahr(-/-) (ECahr(-/-)) mice would exhibit a similar phenotype. We generated ECahr(-/-) mice by crossing AHR floxed mice (ahr(fx/fx)) to mice expressing Cre recombinase driven by an EC-specific promoter. BP was assessed by radiotelemetry prior to and following an acute injection of Ang II or chronic treatment with an angiotensin converting enzyme inhibitor (ACEi). ECahr(-/-) mice were hypotensive (ECahr(+/+): 116.1±1.4; ECahr(-/-): 107.4±2.0 mmHg, n=11, p<0.05) and exhibited significantly different responses to Ang II and ACEi. While Ang II increased BP in both genotypes, the increase was sustained in ECahr(+/+), whereas the increase in ECahr(-/-) mice steadily declined. Area under the curve analysis showed that Ang II-induced increase in diastolic BP (DBP) over 30 min was significantly lower in ECahr(-/-) mice (ECahr(+/+) 1297±223 mmHg/30 min; ECahr(-/-)(AUC): 504±138 mmHg/30 min, p<0.05). In contrast, while ACEi decreased BP in both genotypes, the subsequent rise in DBP after treatment was significantly delayed in the ECahr(-/-) mice. ECahr(-/-) mice also exhibited reduced vascular and adipose Ang II type 1 receptor (AT1R) expression, and reduced aortic Ang II-dependent vasoconstriction in the presence of vascular adipose. Taken together these data suggest that hypotension in ECahr(-/-) mice results from reduced vascular responsiveness to Ang II that is influenced by AT1R expression and adipose.
    Biochemical pharmacology 06/2011; 82(5):514-23. DOI:10.1016/j.bcp.2011.06.011 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There were no signs of overt toxicity in sexually mature female lake trout (Salvelinus namaycush) exposed to either a control or a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-containing diet for 11 wk prior to spawning. At spawning the maternally derived egg TCDD concentrations were 42 ± 4 and 43 ± 6% of the maternal skeletal muscle TCDD concentration on a lipid and wet weight basis, respectively. Egg TCDD concentrations of 233–387 pg TCDD/g egg (wet weight) resulted in nonviable oocytes, while concentrations of 50–152 pg/g resulted in a dose-related increase in sac fry mortality associated with yolk sac edema, craniofacial alterations, and arrested development, resembling blue-sac disease. The dose–response relationship for sac fry mortality associated with blue-sac disease was essentially identical to that observed when fertilized lake trout eggs were exposed to either waterborne or injected TCDD. The no and lowest observable adverse effect levels for sac fry mortality were 23 and 50 pg/g (maternal egg exposure), 34 and 40 pg/g (waterborne egg exposure), and 44 and 55 pg/g (egg injection). LD50s, based on egg TCDD concentration, were 58 (36–90), 69 (64–75), and 80 (68–91) pg/g (95% fiducial limits) following egg exposure via maternal, waterborne, or injection routes, respectively.
    Canadian Journal of Fisheries and Aquatic Sciences 04/2011; 51(6):1410-1419. DOI:10.1139/f94-141 · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lake trout (Salvelinus namaycush) eggs containing [3H]TCDD concentrations from 0 to 302 parts per trillion (ppt) were observed through the fry stage for TCDD metabolism, elimination, and toxicity. All radioactive residues extracted from eggs and sac fry were due to TCDD; no metabolites were detected. [3H]TCDD was not eliminated from eggs and sac fry, but was rapidly eliminated from fry (t1/2, 35–37 d). Hatchability was less at egg TCDD concentrations ; however, the greatest TCDD-related mortality occurred during the sac fry stage. In all TCDD groups (34–302 ppt), sac fry that died developed subcutaneous yolk sac edema prior to death, resembling blue-sac disease. The development of yolk sac edema preceded sac fry mortality, and the severity of edema varied directly with cumulative mortality. Based on TCDD concentrations in the egg resulting from a 48-h exposure, the no observable adverse effect level (NOAEL) for mortality was 34 ppt and the lowest observable adverse effect level (LOAEL) was 55 ppt. The TCDD concentration in eggs that caused 50% mortality above control at swim-up (LD50) was 65 ppt. Lake trout sac fry exposed as eggs are more sensitive to the lethal effects of TCDD than any mammalian, avian, or fish species investigated thus far.
    Canadian Journal of Fisheries and Aquatic Sciences 04/2011; 48(5):875-883. DOI:10.1139/f91-104 · 2.29 Impact Factor
  • Larry N. Agbor · Mary T. Walsh · Mary K. Walker
    Conference on High Blood Pressure Research; 11/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10-14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension.
    Toxicological Sciences 10/2010; 117(2):537-46. DOI:10.1093/toxsci/kfq218 · 3.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep apnea (SA) is defined as intermittent respiratory arrest during sleep and affects up to 20% of the adult population. SA is also associated with an increased incidence of hypertension and peripheral vascular disease. Exposing rodents to intermittent hypoxia during sleep mimics the cyclical hypoxia/normoxia of SA. We have previously shown that in mice and rats intermittent hypoxia induces ET-1 upregulation and systemic hypertension. Furthermore, intermittent hypoxia (IH) in mice increases nuclear factor of activated T cells isoform 3 (NFATc3) transcriptional activity in aorta and mesenteric arteries, whereas the calcineurin/NFAT inhibitor cyclosporin A prevents IH-induced hypertension. More importantly, NFATc3 knockout (KO) mice do not develop IH-induced hypertension. The goals of this study were to determine the role of NFATc3 in IH-induced arterial remodeling and whether IH-induced NFATc3 activation is mediated by ET-1. Oral administration of both a dual (bosentan) and a selective endothelin receptor type A antagonist (PD155080) during 2 days of IH exposure attenuated NFAT activation in aorta and mesenteric arteries. Rho kinase inhibition with fasudil also prevented IH-induced NFAT activation. Mesenteric artery cross-sectional wall thickness was increased by IH in wild-type (WT) and vehicle-treated mice but not in bosentan-treated and NFATc3 KO mice. The arterial remodeling in mesenteric arteries after IH was characterized by increased expression of the hypertrophic NFATc3 target smooth muscle-alpha-actin in WT but not in KO mice. These results indicate that ET-1 is an upstream activator of NFATc3 during intermittent hypoxia, contributing to the resultant hypertension and increased wall thickness.
    AJP Heart and Circulatory Physiology 08/2010; 299(2):H356-63. DOI:10.1152/ajpheart.00341.2010 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been postulated that fetal vascular abnormalities in aryl hydrocarbon receptor null (ahr(-/-)) mice may alter cardiovascular homeostasis in adulthood. We tested the hypothesis that blood pressure regulation in adult heterozygous mice (ahr(+/-)) would be normal, compared to ahr(-/-) mice, since no vascular abnormalities have been reported in the heterozygote animals. Mean arterial blood pressure (MAP) was measured using radiotelemetry prior to and during treatment with inhibitors of the autonomic nervous system, nitric oxide synthase (NOS), angiotensin converting enzyme (ACE), or endothelin-1 A receptor (ET(A)). Also, indices of renin-angiotensin system (RAS) activation were measured. ahr(+/-) and ahr(-/-) mice were normotensive and hypotensive, respectively, compared to wild-type (ahr(+/+)) littermates. Responses of all genotypes to autonomic nervous system inhibition were normal. ahr(+/-) mice responded normally to NOS inhibition, while the responses of ahr(-/-) mice were significantly blunted. In contrast, ahr(+/-) mice were significantly more responsive to inhibition of ACE, an ET(A) antagonist, or both, while ahr(-/-) mice were significantly less responsive to ACE inhibition and more responsive to an ET(A) antagonist. ahr(+/-) mice also exhibited significant increases in plasma renin and ACE activity, plasma sodium, and urine osmolality, indicative of RAS activation. Thus, normotension in ahr(+/-) mice appears to be maintained by increased RAS and ET-1 signaling, while hypotension in ahr(-/-) mice may result from decreased RAS signaling. In conclusion, despite the lack of overt fetal vascular abnormalities in ahr(+/-) mice, the loss of a single ahr allele has a significant effect on blood pressure regulation.
    Biochemical pharmacology 03/2010; 80(2):197-204. DOI:10.1016/j.bcp.2010.03.023 · 5.01 Impact Factor
  • Phillip G Kopf · Mary K Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: The developing cardiovascular system is a sensitive target of many environmental pollutants, including dioxins, dioxin-like polychlorinated biphenyls (PCBs), and some pesticides such as methyl parathion. Laboratory research has utilized a variety of vertebrate models to elucidate potential mechanisms that mediate this cardioteratogenicity and to establish the sensitivity of different species for predicting potential risk to environmental and human health. Studies of dioxin and dioxin-like PCBs have illustrated that piscine, avian, and mammalian embryos exhibit cardiovascular structural changes and functional deficits, although the specific characteristics vary among the individual models. Piscine models typically exhibit reduced blood flow, altered heart looping, and reduced heart size and contraction rate. The chick embryo exhibits extensive cardiac dilation, thinner ventricle walls, and reduced responsiveness to chronotropic stimuli, while the murine embryo exhibits reduced heart size. It is notable that in all models the dioxin-associated cardioteratogenicity is associated with increases in cardiovascular apoptosis and decreases in cardiocyte proliferation. While the cardiotertogenicity in piscine and avian species is associated with overt morbidity and mortality, that is not the case for the murine embryo. However, murine offspring exposed during development to dioxin exhibit cardiac hypertrophy and an increased sensitivity to a second cardiovascular insult in adulthood. Thus, although the mammalian embryo is less sensitive to cardiovascular defects by dioxin and dioxin-like compounds, developmental exposure increases the risk of cardiovascular disease later in life. The impact of developmental exposure to dioxin-like chemicals on human cardiovascular disease susceptibility is not known. However, recent animal research has confirmed human epidemiology studies that dioxin exposure in adulthood is associated with hypertension and cardiovascular disease.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 10/2009; 27(4):276-85. DOI:10.1080/10590500903310195 · 3.56 Impact Factor
  • Source
    Phillip G Kopf · Janice K Huwe · Mary K Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the incidence of human cardiovascular disease are not known. We investigated the degree to which cardiovascular disease develops in mice following subchronic TCDD exposure. Adult male C57BL/6 mice were dosed with vehicle or 300 ng TCDD/kg by oral gavage three times per week for 60 days. Blood pressure was recorded by radiotelemetry and aortic endothelial function was assessed by acetylcholine-induced vasorelaxation. Mean arterial pressure of TCDD-exposed mice was increased significantly by day 4 and between days 7-10, 25-35, and 45-60 with two periods of normalization on days 11-24 and days 36-39. Consistent with a prolonged period of systemic hypertension, heart weight was increased and was associated with concentric left ventricular hypertrophy. Significant increases in superoxide production also were observed in the kidney, heart, and aorta of TCDD-exposed mice. Furthermore, increased aortic superoxide resulted in endothelial dysfunction as demonstrated by significant impairment of acetylcholine-induced vasorelaxation in TCDD-exposed mice, which was restored by tempol, a superoxide dismutase (SOD) mimetic. Our model is the first to definitely demonstrate that sustained AhR activation by TCDD increases blood pressure and induces cardiac hypertrophy, which may be mediated, in part, by increased superoxide.
    Cardiovascular toxicology 11/2008; 8(4):181-93. DOI:10.1007/s12012-008-9027-x · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix Per-Arnt-Sim transcription factor that mediates induction of metabolic enzymes and toxicity of certain environmental pollutants. Although AHR knockout (KO) mice develop cardiac hypertrophy, conflicting reports associate this pathology with hypotension or endothelin (ET)-1-dependent hypertension. Because hypertension occurred at modest altitude, we tested the hypothesis that loss of AHR increases the sensitivity to hypoxia-induced ET-1, contributing to systemic hypertension. We found that AHR KO mice were hypertensive at modest altitude (1632 m) but hypotensive at low altitude (225 m). When AHR KO mice residing at 1632 m were exposed to the partial pressure of inspired oxygen (PIO(2)) at sea level for 11 days, blood pressure declined to levels measured at 225 m. Although plasma ET-1 in AHR KO mice was significantly elevated at 1632 m and decreased at 225 m and sea level PIO(2), pulmonary prepro-ET-1 mRNA was significantly reduced at 1632 m and decreased further at 225 m and sea level PIO(2). Blood gas analysis revealed that AHR KO mice were hypoxemic, hypercapnic, and acidotic at 1632 m, values that were attenuated and normalized after 24 hours and 11 days under sea level PIO(2), respectively. Lastly, AHR inactivation in endothelial cells by small interfering RNA significantly reduced basal prepro-ET-1 mRNA but did not alter hypoxia-induced expression. Our studies establish the AHR KO mouse as a model in which modest decreases in PIO(2) lead to hypoxemia, increased plasma ET-1, and systemic hypertension without increased pulmonary prepro-ET-1 mRNA expression.
    Hypertension 04/2008; 51(3):803-9. DOI:10.1161/HYPERTENSIONAHA.107.100586 · 6.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure would disrupt cardiac ECM expression and be associated with changes in cardiac morphology in adulthood. In one study, time-pregnant C57BL/6 mice were dosed with corn oil or 1.5, 3.0, or 6.0 microg TCDD/kg on gestation day (GD) 14.5 and sacrificed on GD 17.5, when changes in fetal cardiac mRNA expression were analyzed using quantitative PCR. TCDD induced mRNA expression of genes associated with ECM remodeling (matrix metalloproteinase 9 and 13, preproendothelin-1 [preproET-1]), cardiac hypertrophy (atrial natriuretic peptide, beta-myosin heavy chain, osteopontin), and aryl hydrocarbon receptor (AHR) activation (cytochrome P4501A1, AHR repressor). Further, all TCDD-induced changes required the AHR since gene expression was not altered in AHR knockout fetuses. In a second study, time-pregnant mice were treated with corn oil or 6.0 microg TCDD/kg on GD 14.5, and male offspring were assessed for changes in cardiac gene expression and cardiac and renal morphology at 3 months. All TCDD-induced changes in cardiac gene expression observed fetally, except for preproET-1, remained induced in the hearts of adult male offspring. Adult male offspring of TCDD-exposed dams also displayed cardiac hypertrophy, decreased plasma volume, and mild hydronephrosis. These results demonstrate that in utero and lactational TCDD exposures alter cardiac gene expression and cardiac and renal morphology in adulthood, which may increase the susceptibility to cardiovascular dysfunction.
    Toxicological Sciences 03/2008; 101(2):321-30. DOI:10.1093/toxsci/kfm272 · 3.85 Impact Factor

Publication Stats

2k Citations
145.69 Total Impact Points


  • 2000–2014
    • University of New Mexico
      • • Department of Pharmaceutical Sciences
      • • Department of Cell Biology and Physiology
      • • Division of Hospital Medicine
      • • College of Pharmacy
      Albuquerque, New Mexico, United States
  • 2011
    • Cornell University
      Итак, New York, United States
  • 1991–2011
    • University of Wisconsin–Madison
      • • Department of Nutritional Sciences
      • • School of Pharmacy
      • • Molecular and Environmental Toxicology Center
      Madison, Wisconsin, United States
  • 2010
    • Wright State University
      Dayton, Ohio, United States
  • 2008
    • Lovelace Respiratory Research Institute
      Albuquerque, New Mexico, United States
  • 2005
    • Bates College
      • Department of Biology
      Льюистон, Maine, United States
  • 2003
    • University of Wisconsin - Milwaukee
      Milwaukee, Wisconsin, United States