Mark Windheim

Hannover Medical School, Hannover, Lower Saxony, Germany

Are you Mark Windheim?

Claim your profile

Publications (7)43.49 Total impact

  • Mark Windheim, Benjamin Hansen
    [show abstract] [hide abstract]
    ABSTRACT: Interleukin 1 (IL-1) triggers the internalization of its cognate receptor from the plasma membrane. We recently demonstrated that this internalization is of critical importance for the IL-1-induced gene expression. In this study we report that the IL-1-induced activation of the small GTPase Rac1 requires receptor endocytosis. We further show that the depletion of Rac1 reduces the IL-1-dependent gene expression without affecting signaling events that are initiated at the plasma membrane. Collectively, we provide evidence for a key role for Rac1 in a pathway that regulates IL-1-induced gene expression depending on receptor endocytosis.
    Cellular signalling 09/2013; · 4.09 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Interleukin-1 (IL-1) induces the internalization of its cognate receptor from the plasma membrane. However, it has remained elusive as to how this mechanism affects the IL-1-induced signal transduction. In this study, we used small-molecule inhibitors of receptor endocytosis to analyze the effects on IL-1-induced signal transduction pathways. We demonstrate that the inhibition of endocytosis down-modulates IL-1-induced NF-κB-dependent gene expression at a level downstream of nuclear translocation and DNA binding of NF-κB. Moreover, we report that the reduced NF-κB-dependent gene expression disrupts feedback inhibition loops terminating the activation of mitogen-activated protein kinases and down-regulating the expression of IL-1-induced mRNAs. Collectively, we show that the inhibition of endocytosis causes a dysregulation of IL-1-induced signal transduction and gene expression demonstrating an important role for receptor internalization in IL-1 signaling.
    Cellular signalling 09/2012; 25(1):214-228. · 4.09 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Interleukin 1 (IL-1) has been reported to stimulate the polyubiquitination and disappearance of IL-1 receptor-associated kinase 1 (IRAK1) within minutes. It has been thought that the polyubiquitin chains attached to IRAK1 are linked via Lys48 of ubiquitin, leading to its destruction by the proteasome and explaining the rapid IL-1-induced disappearance of IRAK1. In this paper, we demonstrate that IL-1 stimulates the formation of K63-pUb-IRAK1 and not K48-pUb-IRAK1 and that the IL-1-induced disappearance of IRAK1 is not blocked by inhibition of the proteasome. We also show that IL-1 triggers the interaction of K63-pUb-IRAK1 with NEMO, a regulatory subunit of the IkappaBalpha kinase (IKK) complex, but not with the NEMO[D311N] mutant that cannot bind K63-pUb chains. Moreover, unlike wild-type NEMO, the NEMO[D311N] mutant was unable to restore IL-1-stimulated NF-kappaB-dependent gene transcription to NEMO-deficient cells. Our data suggest a model in which the recruitment of the NEMO-IKK complex to K63-pUb-IRAK1 and the recruitment of the TAK1 complex to TRAF6 facilitate the TAK1-catalyzed activation of IKK by the TRAF6-IRAK1 complex.
    Molecular and cellular biology 04/2008; 28(5):1783-91. · 6.06 Impact Factor
  • Source
    Mark Windheim, Mark Peggie, Philip Cohen
    [show abstract] [hide abstract]
    ABSTRACT: RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.
    Biochemical Journal 03/2008; 409(3):723-9. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The protein kinases IRAK [IL-1 (interleukin 1) receptor-associated kinase] 1 and 4 play key roles in a signalling pathway by which bacterial infection or IL-1 trigger the production of inflammatory mediators. In the present study, we demonstrate that IRAK1 and IRAK4 phosphorylate Pellino isoforms in vitro and that phosphorylation greatly enhances Pellino's E3 ubiquitin ligase activity. We show that, in vitro, Pellino 1 can combine with the E2 conjugating complex Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) to catalyse the formation of K63-pUb (Lys63-linked polyubiquitin) chains, with UbcH3 to catalyse the formation of K48-pUb chains and with UbcH4, UbcH5a or UbcH5b to catalyse the formation of pUb-chains linked mainly via Lys11 and Lys48 of ubiquitin. In IRAK1-/- cells, the co-transfection of DNA encoding wild-type IRAK1 and Pellino 2, but not inactive mutants of these proteins, induces the formation of K63-pUb-IRAK1 and its interaction with the NEMO [NF-kappaB (nuclear factor kappaB) essential modifier] regulatory subunit of the IKK (inhibitor of NF-kappaB kinase) complex, a K63-pUb-binding protein. These studies suggest that Pellino isoforms may be the E3 ubiquitin ligases that mediate the IL-1-stimulated formation of K63-pUb-IRAK1 in cells, which may contribute to the activation of IKKbeta and the transcription factor NF-kappaB, as well as other signalling pathways dependent on IRAK1/4.
    Biochemical Journal 02/2008; 409(1):43-52. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2-RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1beta (interleukin-1beta) and TNFalpha (tumour necrosis factor-alpha). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-beta-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38alpha MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38alpha MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1beta and TNFalpha in these cells. Taken together, our results indicate that the MDP-NOD2/RIP2 and LPS (lipopolysaccharide)-TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways.
    Biochemical Journal 07/2007; 404(2):179-90. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system.
    Molecular Cell 12/2005; 20(4):525-38. · 15.28 Impact Factor

Publication Stats

357 Citations
43.49 Total Impact Points


  • 2012–2013
    • Hannover Medical School
      • Institute of Clinical Biochemistry
      Hannover, Lower Saxony, Germany
  • 2007–2008
    • University of Dundee
      • College of Life Sciences
      Dundee, SCT, United Kingdom