M. Böttcher

North West University South Africa, Potchefstroom, North-West, South Africa

Are you M. Böttcher?

Claim your profile

Publications (261)747.72 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the results of two coordinated multiwavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts. These campaigns obtained UV and X-ray data us-ing the XMM-Newton satellite, while the gamma-ray data were obtained utilizing three imaging atmo-spheric Cerenkov telescopes, the Whipple 10 m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands. The coordinated effort between the gamma-ray groups allowed for truly simultaneous data in UV/X-ray/gamma-ray wavelengths during a sig-nificant portion of the XMM-Newton observations. This simultaneous coverage allowed for a reliable search for correlations between UV, X-ray, and gamma-ray variability over the course of the observations. In-vestigations of spectral hysteresis and modeling of the spectral energy distributions are also presented.
    The Astrophysical Journal J. Moldón J. Ninkovic E. Prandini N. Puchades I. Reichardt J. Rico T. Y. Saito V. Scalzotto S. N. Shore N. Sidro A. Sierpowska-Bartosik J. Sitarek J. Zapatero. 03/2037; 703455657454052443847(35):169-178.
  • Source
    H. E. S. S. Collaboration, A. Abramowski, F. Aharonian, F. Ait Benkhali, A. G. Akhperjanian, E. Angüner, M. Backes, S. Balenderan, A. Balzer, A. Barnacka, [......], P. Willmann, A. Wörnlein, D. Wouters, R. Yang, V. Zabalza, D. Zaborov, M. Zacharias, A. A. Zdziarski, A. Zech, H. -S. Zechlin
    [Show abstract] [Hide abstract]
    ABSTRACT: Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of ~3.9x10-24 cm^3 s-1 at a 95% confidence level.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we report on the analysis of all the available optical and very high-energy $\gamma$-ray ($>$200 GeV) data for the BL Lac object PKS 2155$-$304, collected simultaneously with the ATOM and H.E.S.S. telescopes from 2007 until 2009. This study also includes X-ray (RXTE, Swift) and high-energy $\gamma$-ray (Fermi-LAT) data. During the period analysed, the source was transitioning from its flaring to quiescent optical states,and was characterized by only moderate flux changes at different wavelengths on the timescales of days and months. A flattening of the optical continuum with an increasing optical flux can be noted in the collected dataset, but only occasionally and only at higher flux levels. We did not find any universal relation between the very high-energy $\gamma$-ray and optical flux changes on the timescales from days and weeks up to several years. On the other hand, we noted that at higher flux levels the source can follow two distinct tracks in the optical flux-colour diagrams, which seem to be related to distinct $\gamma$-ray states of the blazar. The obtained results therefore indicate a complex scaling between the optical and $\gamma$-ray emission of PKS 2155$-$304, with different correlation patterns holding at different epochs, and a $\gamma$-ray flux depending on the combination of an optical flux and colour rather than a flux alone.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This letter reports the discovery of a remarkably hard spectrum source, HESS J1641-463, by the High Energy Stereoscopic System (H.E.S.S.) in the very-high energy (VHE) domain. HESS J1641-463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640-465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of F(E > 1 TeV) = (3.64 +/- 0.44_stat +/- 0.73_sys) x 10^-13 cm^-2s-1, corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Gamma = 2.07 +/- 0.11_stat +/- 0.20_sys. It is a point-like source, although an extension up to Gaussian width of sigma = 0.05 deg cannot be discounted due to uncertainties in the H.E.S.S. PSF. The VHE gamma-ray flux of HESS J1641-463 is found to be constant over the observed period when checking time binnings from year-by-year to the 28 min exposures timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association, however Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE gamma-ray production scenarios are discussed. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend up to at least a few hundred TeV. The energy released in accelerating these particles could account for the entire energy budget of the galactic cosmic ray population above a few TeV.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS and the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17{\deg}), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15{\deg}) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears in the spectra around 100 GeV. Two main scenarios are proposed to explain the emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with a molecular cloud. X-ray observations suggest the presence of a point-like source (pulsar candidate) near the center of the SNR and non-thermal X-ray diffuse emission which could arise from a potential PWN. The PWN scenario is supported by the match of of the TeV and GeV positions with the putative pulsar. However, the overall spectrum is reproduced by a 1-zone leptonic model only if an excess of low-energy electrons is injected by a high spin-down power pulsar. This low-energy component is not needed if the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH maser lines and the hadronic modeling.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the $0.3\textrm{--}10$ keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, $>100$ GeV) regime. Due to its relatively small redshift of $z\sim0.5$, the favourable position in the southern sky and the relatively short follow-up time ($<700 \rm{s}$ after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above $\sim$380 GeV of $4.2\times10^{-12} \rm cm^{-2}s^{-1}$ (95 % confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform time-dependent, spatially-resolved simulations of blazar emission to evaluate several flaring scenarios related to magnetic-field amplification and enhanced particle acceleration. The code explicitly accounts for light-travel-time effects and is applied to flares observed in the flat spectrum radio quasar (FSRQ) PKS 0208-512, which show optical/{\gamma}-ray correlation at some times, but orphan optical flares at other times. Changes in both the magnetic field and the particle acceleration efficiency are explored as causes of flares. Generally, external Compton emission appears to describe the available data better than a synchrotron self-Compton scenario, and in particular orphan optical flares are difficult to produce in the SSC framework. X-ray soft-excesses, {\gamma}-ray spectral hardening, and the detections at very high energies of certain FSRQs during flares find natural explanations in the EC scenario with particle acceleration change. Likewise, optical flares with/without {\gamma}-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which may be related to the orientation of the magnetic field relative to the jet flow. We also calculate the degree of linear polarization and polarization angle as a function of time for a jet with helical magnetic field. Tightening of the magnetic helix immediately downstream of the jet perturbations, where flares occur, can be sufficient to explain the increases in the degree of polarization and a rotation by >= 180 degree of the observed polarization angle, if light-travel-time effects are properly considered.
    04/2014; 441(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E $>$ 0.1 TeV) {\gamma}-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE {\gamma}-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov telescope array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analyzed in the context of the multi-wavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant {\gamma}-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99% confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index {\Gamma} = 2.5 were set at 5.6 $\times$ 10$^{-13}$ cm$^{-2}$ s$^{-1}$ above 0.26 TeV and 3.2 $\times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B$_{\mathrm{G1.9}}$ $\gtrsim$ 11 {\mu}G for G1.9+0.3 and to B$_{\mathrm{G330}}$ $\gtrsim$ 8 {\mu}G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.
    04/2014;
  • Source
    Manasvita Joshi, Alan P. Marscher, Markus Boettcher
    [Show abstract] [Hide abstract]
    ABSTRACT: We extend our approach of modeling spectral energy distribution (SED) and lightcurves of blazars to include external Compton (EC) emission due to inverse Compton scattering of an external anisotropic target radiation field. We describe the time-dependent impact of such seed photon fields on the evolution of multifrequency emission and spectral variability of blazars using a multi-zone time-dependent leptonic jet model, with radiation feedback, in the internal shock model scenario. We calculate accurate EC-scattered high-energy spectra produced by relativistic electrons throughout the Thomson and Klein-Nishina regimes. We explore the effects of varying the contribution of (1) a thermal Shakura-Sunyaev accretion disk, (2) a spherically symmetric shell of broad-line clouds, the broad line region (BLR), and (3) a hot infrared emitting dusty torus (DT), on the resultant seed photon fields. We let the system evolve to beyond the BLR and within the DT and study the manifestation of the varying target photon fields on the simulated SED and lightcurves of a typical blazar. The calculations of broadband spectra include effects of gamma-gamma absorption as gamma-rays propagate through the photon pool present inside the jet due to synchrotron and inverse Compton processes, but neglect gamma-gamma absorption by the BLR and DT photon fields outside the jet. Thus, our account of gamma-gamma absorption is a lower limit to this effect. Here, we focus on studying the impact of parameters relevant for EC processes on high-energy (HE) emission of blazars.
    03/2014; 785(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 40% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E>100 GeV) sources and constraining the physical processes at play in potential emitters. H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their gamma-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 objects. Taking into account the attenuation by the extragalactic background light reduces the tension for all but two of them, suggesting intrinsic curvature in the high-energy spectra of these two AGN. Compilation efforts led by current VHE instruments are of critical importance for target-selection strategies before the advent of the Cherenkov Telescope Array, CTA.
    02/2014;
  • Source
    Haocheng Zhang, Xuhui Chen, Markus Boettcher
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed analysis of time- and energy-dependent synchrotron polarization signatures in a shock-in-jet model for gamma-ray blazars. Our calculations employ a full 3D radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are taken care of with the 2D MCFP code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + SSC flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large PA rotations by > 180 deg., as observed in connection with gamma-ray flares in several blazars, without the need for bent or helical jet trajectories or other non-axisymmetric jet features.
    The Astrophysical Journal 01/2014; 789(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of follow-up observations of the TeV gamma-ray source HESSJ 1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (H.E.S.S.) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Gamma=2.11 +/- 0.09_stat +/- 0.10_sys, and a cut-off energy of E_c = (6.0 +2.0 -1.2) TeV. The TeV emission is significantly extended and overlaps with the north-western part of the shell of the SNR G338.3-0.0. The new H.E.S.S. results, a re-analysis of archival XMM-Newton data, and multi-wavelength observations suggest that a significant part of the gamma-ray emission from HESS J1640-465 originates in the SNR shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as W_p n_H ~ 4 x 10^52 (d/10kpc)^2 erg cm^-3.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Very-high-energy (VHE; E>100 GeV) {\gamma}-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these {\gamma}-rays with the Extragalactic Background Light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 were searched for, using VHE {\gamma}-ray data taken with the High Energy Stereoscopic System (H.E.S.S.), and high energy (HE; 100 MeV<E<100 GeV) {\gamma}-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed gamma-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 are found to be at a level of few percent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong Extra-Galactic Magnetic Field (EGMF) values, > 10$^{-12}$G, this limits the production of pair halos developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in magnetically broadened cascades, EGMF strengths in the range (0.3 - 3)$\times 10^{-15}$G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.
    Astronomy and Astrophysics 01/2014; 562. · 5.08 Impact Factor
  • Markus Böttcher, Anita Reimer, Haocheng Zhang
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in AGN in a temporary steady state. The new model implementations are used to fit snap-shot spectral energy distributions of a representative set of Fermi-LAT detected blazars from the first LAT AGN catalogue. We find that the leptonic model is capable of producing acceptable fits to the SEDs of almost all blazars with reasonable parameters close to equipartition between the magnetic field and the relativistic electron population. If charge neutrality in leptonic models is provided by cold protons, our fits indicate that the kinetic energy carried by the jet should be dominated by protons. We also find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. All of our hadronic model fits require powers in relativistic protons in the range 1047 - 1049 erg/s. As a potential way to distinguish between the leptonic and hadronic high-energy emission models considered here, we suggest diagnostics based on the predicted X-ray and γ-ray polarization, which are drastically different for the two types of models.
    12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present particle-in-cell simulation results of relativistic shear flows for hybrid positron-electron-ion plasmas and compare to those for pure e + e – and pure e – ion plasmas. Among the three types of relativistic shear flows, we find that only hybrid shear flow is able to energize the electrons to form a high-energy spectral peak plus a hard power law tail. Such electron spectra are needed to model the observational properties of gamma-ray bursts.
    The Astrophysical Journal 12/2013; 779(2):L27-. · 6.73 Impact Factor
  • Manasvita Joshi, Alan Marscher, Markus Böttcher
    [Show abstract] [Hide abstract]
    ABSTRACT: The location of γ-ray emission in blazar jets has remained elusive as wetry to understand jet emission despite the extensive multiwavelength campaigns and vigorous theoretical efforts to understand the multiwavelength spectra. The synergy between multiwavelength campaigns and VLBA studies has resulted in correlation between the majority of γ-ray events and disturbances propagating down the parsec-scale jet. This implies that the γ-ray emission might originate beyond the broad line region (BLR), perhaps on scales comparable to the size of the dusty torus. On the other hand, external Compton models in which γ-ray emission is limited to sites inside the BLR have been used to explain the high-energy emission of many blazars. Thus, comprehending the time-dependent impact of all the three external components of seed photon field, namely the accretion disk, the BLR, and the dusty torus, on the evolution of the spectral energy distribution (SED) can be used as an important tool for connecting the origin of γ-ray emission of a flare to its multiwavelength properties. Here, we use a multi-zone time-dependent leptonic jet model, with radiation feedback, to address this aspect of blazar jet emission. We let the system evolve to beyond the BLR and within the dusty torus. We explore the effects of varying the contribution of the disk, the BLR, and the dusty torus on the resultant seed photon field and their manifestation on the simulated SED of a typical blazar to gain insight on the location of the γ-ray emission region.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories both in the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the VERITAS and H.E.S.S. Cherenkov Telescopes and the X-ray Satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The VHE emission is found to be variable, and is correlated with that at X-ray energies. An orbital period of $315 ^{+6}_{-4}$ days is derived from the X-ray data set, which is compatible with previous results, $P = (321 \pm 5$) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant ($> 6.5 \sigma$) detection at orbital phases 0.6--0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.
    The Astrophysical Journal 11/2013; 780. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. On March 4, 2013, the Fermi-LAT and AGILE reported a flare from the direction of the Crab Nebula in which the high-energy (HE; E > 100 MeV) flux was six times above its quiescent level. Simultaneous observations in other energy bands give us hints about the emission processes during the flare episode and the physics of pulsar wind nebulae in general. Aims. We search for variability of the emission of the Crab Nebula at very-high energies (VHE; E > 100 GeV), using contemporaneous data taken with the H.E.S.S. array of Cherenkov telescopes. Methods. Observational data taken with the H.E.S.S. instrument on five consecutive days during the flare were analysed concerning the flux and spectral shape of the emission from the Crab Nebula. Night-wise light curves are presented with energy thresholds of 1 TeV and 5 TeV. Results. The observations conducted with H.E.S.S. on 2013 March 6 to March 10 show no significant changes in the flux. They limit the variation on the integral flux above 1 TeV to less than 63% and the integral flux above 5 TeV to less than 78% at a 95% confidence level.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Composite supernova remnants (SNRs) constitute a small subclass of remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray and gamma-ray regimes allow the study of the co-evolution of both of these energetic phenomena. In this article, we report results from observations of the shell-type SNR G15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV gamma-ray source, HESSJ1818-154, located in the center and contained within the shell of G15.4+0.1 is detected by H.E.S.S. featuring a spectrum best represented by a power-law model with a spectral index of $-2.3 \pm 0.3_{stat} \pm 0.2_{sys}$ and an integral flux of F$(>0.42\,\mathrm{TeV}$)=($0.9 \pm 0.3_{\mathrm{stat}} \pm 0.2_{\mathrm{sys}}) \times 10^{-12}$ cm$^{-2}$ s$^{-1}$. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G15.4+0.1. The X-ray source shows indications for an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE gamma-ray emission provide strong evidence for the existence of a PWN located inside the shell of G15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray and gamma-ray emission from the PWN is compatible with a one-zone leptonic model which requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, thought to power the PWN, has not been detected neither in radio nor in X-ray observations of G15.4+0.1.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on VERITAS observations of the BL Lac object B2 1215+30 between 2008 and 2012. During this period, the source was detected at very high energies (VHE; E > 100 GeV) by VERITAS with a significance of $8.9\sigma$ and showed clear variability on time scales larger than months. In 2011, the source was found to be in a relatively bright state and a power-law fit to the differential photon spectrum yields a spectral index of $3.6 \pm 0.4_{\mathrm{stat}} \pm 0.3_{\mathrm{syst}}$ with an integral flux above 200 GeV of $(8.0 \pm 0.9_{\mathrm{stat}} \pm 3.2_{\mathrm{syst}}) \times 10^{-12}\, \mathrm{cm}^{-2} \mathrm{s}^{-1}$. No short term variability could be detected during the bright state in 2011. Multi-wavelength data were obtained contemporaneous with the VERITAS observations in 2011 and cover optical (Super-LOTIS, MDM, Swift-UVOT), X-ray (Swift-XRT), and gamma-ray (Fermi-LAT) frequencies. These were used to construct the spectral energy distribution (SED) of B2 1215+30. A one-zone leptonic model is used to model the blazar emission and the results are compared to those of MAGIC from early 2011 and other VERITAS-detected blazars. The SED can be well reproduced with model parameters typical for VHE-detected BL Lacs.
    The Astrophysical Journal 10/2013; 779. · 6.73 Impact Factor

Publication Stats

1k Citations
747.72 Total Impact Points

Institutions

  • 2013–2014
    • North West University South Africa
      • Centre for Space Research
      Potchefstroom, North-West, South Africa
    • Columbia University
      • Columbia Astrophysics Laboratory
      New York City, New York, United States
  • 1022–2013
    • Ohio University
      • Department of Physics and Astronomy
      Athens, Ohio, United States
  • 2012
    • University of Maryland, College Park
      • Department of Astronomy
      Maryland, United States
  • 2010
    • Universidad Nacional Autónoma de México
      • Institute of Astronomy
      Ciudad de México, The Federal District, Mexico
  • 1997–2009
    • Rice University
      • Department of Physics and Astronomy
      Houston, TX, United States
    • University of Houston
      Houston, Texas, United States
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2006
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, California, United States
  • 2001
    • University of Maryland, Baltimore
      Baltimore, Maryland, United States
  • 1999
    • Ruhr-Universität Bochum
      • Institut für Theoretische Physik I
      Bochum, North Rhine-Westphalia, Germany