M I Darville

Université Libre de Bruxelles, Brussels, BRU, Belgium

Are you M I Darville?

Claim your profile

Publications (23)142.79 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory mediators contribute to pancreatic beta cell death in type 1 diabetes. Beta cells respond to cytokine exposure by activating gene networks that alter cellular metabolism, induce chemokine release (thereby increasing insulitis), and cause apoptosis. We have previously shown by microarray analysis that exposure of INS-1E cells to IL-1beta + IFN-gamma induces the transcription factor peroxisome proliferator-activated receptor (Ppar)-delta and several of its target genes. PPAR-delta controls cellular lipid metabolism and is a major regulator of inflammatory responses. We therefore examined the role of PPAR-delta in cytokine-treated beta cells. Primary beta cells that had been purified by fluorescence-activated cell sorting and INS-1E cells were cultured in the presence of the cytokines TNF-alpha, IL-1beta, or IL-1beta + IFN-gamma, or the synthetic PPAR-delta agonist GW501516. Gene expression was analysed by real-time PCR. PPAR-delta, monocyte chemoattractant protein (MCP-1, now known as CCL2) promoter and NF-kappaB activity were determined by luciferase reporter assays. Exposure of primary beta cells or INS-1E cells to cytokines induced Ppar-delta mRNA expression and PPAR-delta-dependent CD36, lipoprotein lipase, acyl CoA synthetase and adipophilin mRNAs. Cytokines and the PPAR-delta agonist GW501516 also activated a PPAR-delta response element reporter in beta cells. Unlike immune cells, neither INS-1E nor beta cells expressed the transcriptional repressor B-cell lymphoma-6 (BCL-6). As a consequence, PPAR-delta activation by GW501516 did not decrease cytokine-induced Mcp-1 promoter activation or mRNA expression, as reported for macrophages. Transient transfection with a BCL-6 expression vector markedly reduced Mcp-1 promoter and NF-kappaB activities in beta cells. Cytokines activate the PPAR-delta gene network in beta cells. This network does not, however, regulate the pro-inflammatory response to cytokines because beta cells lack constitutive BCL-6 expression. This may render beta cells particularly susceptible to propagating inflammation in type 1 diabetes.
    Diabetologia 11/2006; 49(10):2350-8. · 6.49 Impact Factor
  • Martine I Darville, Décio L Eizirik
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are mediators of pancreatic beta-cell dysfunction and death in type 1 diabetes mellitus. Microarray analyses of insulin-producing cells exposed to interleukin-1beta+interferon-gamma showed decreased expression of genes related to beta-cell-differentiated functions and increased expression of members of the Notch signaling pathway. Re-expression of this developmental pathway may contribute for loss-of-function of beta-cells exposed to an autoimmune attack. In this study, we show that rat primary beta-cells exposed to cytokines up-regulate several Notch receptors and ligands, and the target gene Hes1. Transfection of insulin-producing INS-1E cells and primary rat beta-cells with a constitutively active form of the Notch receptor down-regulated Pdx1 and insulin expression in INS-1E cells but not in primary beta-cells. Thus, activation of the Notch pathway inhibits differentiated functions in dividing but not in terminally differentiated beta-cells.
    Biochemical and Biophysical Research Communications 02/2006; 339(4):1063-8. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and the nuclear factor kappa B (NFkappaB) pathway. Both pathways are required for expression of the gene encoding inducible nitric oxide synthase (iNOS) and for IL-1beta-mediated beta cell death. The molecular mechanisms by which these two pathways regulate beta cell Nos2 expression are currently unknown. Therefore, the aim of this study was to clarify the putative crosstalk between MAPK and NFkappaB activation in beta cells. The MAPKs ERK, p38 and JNK were inhibited by SB203580, PD98059 or Tat-JNK binding domain or by cells overexpressing the JNK binding domain. The effects of MAPK inhibition on IL-1beta-induced iNOS production and kappa B inhibitor protein (IkappaB) degradation were examined by western blotting. NFkappaB DNA binding was investigated by electrophoretic mobility shift assay, while NFkappaB-induced gene transcription was evaluated by gene reporter assays. Inhibition of the MAPKs did not affect IkappaB degradation or NFkappaB DNA binding. However, inhibition of ERK reduced NFkappaB-mediated Nos2 expression; serine 276 phosphorylation of the p65 unit of the NFkappaB complex seemed critical, as evaluated by amino acid mutation analysis. ERK activity is required for NFkappaB-mediated transcription of Nos2 in insulin-producing INS-1E cells, indicating that ERK regulates Nos2 expression by increasing the transactivating capacity of NFkappaB. This may involve phosphorylation of Ser276 on p65 by an as yet unidentified kinase.
    Diabetologia 01/2006; 48(12):2582-90. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown. The effect of SOCS-3 expression on the global gene-expression profile following IL-1beta exposure was microarray-analysed using a rat beta cell line (INS-1) with inducible SOCS-3 expression. Subsequently, functional analyses were performed. Eighty-two known genes and several expressed sequence tags (ESTs) changed expression level 2.5-fold or more in response to IL-1beta alone. Following 6 h of IL-1beta exposure, 23 transcripts were up-regulated. Of these, several, including all eight transcripts relating to immune/inflammatory response pathways, were suppressed by SOCS-3. Following 24 h of IL-1beta exposure, secondary response genes were detected, affecting metabolism, energy generation, protein synthesis and degradation, growth arrest, and apoptosis. The majority of these changes were prevented by SOCS-3 expression. Multiple IL-1beta-induced NF-kappaB-dependent proapoptotic early response genes were inhibited by SOCS-3 expression, suggesting that SOCS-3 inhibits NF-kappaB-mediated signalling. These observations were experimentally confirmed in functional analyses. This study suggests that there is an unexpected cross-talk between the SOCS/IFN and the IL-1beta pathways of signalling in pancreatic beta cells, which could lead to a novel perspective of blocking two important proapoptotic pathways in pancreatic beta cells by influencing a single signalling molecule, namely SOCS-3.
    Diabetologia 12/2004; 47(11):1998-2011. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examines whether activated macrophages may radiosensitize tumor cells through the release of proinflammatory mediators. RAW 264.7 macrophages were activated by lipid A, and the conditioned medium (CM) was analyzed for the secretion of cytokines and the production of nitric oxide (NO) through inducible nitric oxide synthase (iNOS). EMT-6 tumor cells were exposed to CM and analyzed for hypoxic cell radiosensitivity. The role of nuclear factor (NF)-kappaB in the transcriptional activation of iNOS was examined by luciferase reporter gene assay. Clinical immunomodulator lipid A, at a plasma-relevant concentration of 3 microg/mL, stimulated RAW 264.7 macrophages to release NO, tumor necrosis factor (TNF)-alpha, and other cytokines. This in turn activated iNOS-mediated NO production in EMT-6 tumor cells and drastically enhanced their radiosensitivity. Radiosensitization was abrogated by the iNOS inhibitor aminoguanidine but not by a neutralizing anti-TNF-alpha antibody. The mechanism of iNOS induction was linked to NF-kappaB but not to JAK/STAT signaling. Interferon-gamma further increased the NO production by macrophages to a level that caused radiosensitization of EMT-6 cells through the bystanding effect of diffused NO. We demonstrate for the first time that activated macrophages may radiosensitize tumor cells through the induction of NO synthesis, which occurs in both tumor and immune cells.
    International Journal of Radiation OncologyBiologyPhysics 11/2004; 60(2):598-606. · 4.52 Impact Factor
  • Martine I Darville, Sara Terryn, Décio L Eizirik
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide, generated by the inducible form of nitric oxide synthase (iNOS), is a potential mediator of cytokine-induced beta-cell dysfunction in type 1 diabetes mellitus. We have previously shown that cytokine-induced iNOS expression is cycloheximide (CHX) sensitive and requires nuclear factor-kappa B (NF-kappa B) activation. In the present study, we show that an octamer motif located 20 bp downstream of the proximal NF-kappa B binding site in the rat iNOS promoter is critical for IL-1 beta and interferon-gamma induction of promoter activity in rat primary beta-cells and insulin-producing RINm5F cells. In gel shift assays, the octamer motif bound constitutively the transcription factor Oct1. Neither Oct1 nor NF-kappa B binding activities were blocked by CHX, suggesting that other factor(s) synthesized in response to IL-1 beta contribute to iNOS promoter induction. The high mobility group (HMG)-I(Y) protein also bound the proximal iNOS promoter region. HMG-I(Y) binding was decreased in cells treated with CHX and HMG-I(Y) silencing by RNA interference reduced IL-1 beta-induced iNOS promoter activity. These results suggest that Oct1, NF-kappa B, and HMG-I(Y) cooperate for transactivation of the iNOS promoter in pancreatic beta-cells.
    Endocrinology 04/2004; 145(3):1130-6. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The beta cell fate following immune-mediated damage depends on an intricate pattern of dozens of genes up- or downregulated in parallel and/or sequentially. We are utilizing microarray analysis to clarify the pattern of gene expression in primary rat beta cells exposed to the proapoptotic cytokines, IL-1beta and/or IFN-gamma. The picture emerging from these experiments is that beta cells are not passive bystanders of their own destruction. On the contrary, beta cells respond to damage by activating diverse networks of transcription factors and genes that may either lead to apoptosis or preserve viability. Of note, cytokine-exposed beta cells produce and release chemokines that may contribute to the homing and activation of T cells and macrophages during insulitis. Several of the effects of cytokines depend on the activation of the transcription factor, NF-kappaB. NF-kappaB blocking prevents cytokine-induced beta cell death, and characterization of NF-kappaB-dependent genes by microarray analysis indicated that this transcription factor controls diverse networks of transcription factors and effector genes that are relevant for maintenance of beta cell differentiated status, cytosolic and ER calcium homeostasis, attraction of mononuclear cells, and apoptosis. Identification of this and additional "transcription factor networks" is being pursued by cluster analysis of gene expression in insulin-producing cells exposed to cytokines for different time periods. Identification of complex gene patterns poses a formidable challenge, but is now technically feasible. These accumulating evidences may finally unveil the molecular mechanisms regulating the beta cell "decision" to undergo or not apoptosis in early T1DM.
    Annals of the New York Academy of Sciences 12/2003; 1005:55-74. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Locally released cytokines contribute to beta-cell dysfunction and apoptosis in type 1 diabetes. In vitro exposure of insulin-producing INS-1E cells to the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma leads to a significant increase in apoptosis. To characterize the genetic networks implicated in beta-cell dysfunction and apoptosis and its dependence on nitric oxide (NO) production, we performed a time-course microarray analysis of cytokine-induced genes in insulin-producing INS-1E cells. INS-1E cells were exposed in duplicate to IL-1beta + IFN-gamma for six different time points (1, 2, 4, 8, 12, and 24 h) with or without the inducible NO synthase (iNOS) blocker N(G)-monomethyl-L-arginine (NMA). The microarray analysis identified 698 genes as cytokine modified (>or=2.5-fold change compared with control) in at least one time point. Based on their temporal pattern of variation, the cytokine-regulated genes were classified into 15 clusters by the k-means method. These genes were further classified into 14 different groups according to their putative function. Changes in the expression of genes related to metabolism, signal transduction, and transcription factors at all time points studied indicate beta-cell attempts to adapt to the effects of continuous cytokine exposure. Notably, several apoptosis-related genes were modified at early time points (2-4 h) preceding iNOS expression. On the other hand, 46% of the genes modified by cytokines after 8-24 h were NO dependent, indicating the important role of this radical for the late effects of cytokines. The present results increase by more than twofold the number of known cytokine-modified genes in insulin-producing cells and yield comprehensive information on the role of NO for these modifications in gene expression. These data provide novel and detailed insights into the gene networks activated in beta-cells facing a prolonged immune assault.
    Diabetes 11/2003; 52(11):2701-19. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic beta-cells are selectively destroyed during the course of type 1 diabetes. In the early stages of the disease, inflammatory infiltrates of mononuclear cells, containing predominantly monocytes and T-cells, are present in the islets (insulitis). Chemokines, such as monocyte chemoattractant protein-1 (MCP-1), play a key role in the recruitment and activation of these immunocytes. We have previously described cytokine-induced MCP-1 gene expression in human and rat pancreatic islets. In the present study, the transcriptional regulation by cytokines of the rat MCP-1 gene in fluorescence-activated cell sorting-purified rat beta-cells, insulin-producing INS-1E cells, and RINm5F cells was investigated. Transient transfections with luciferase-reporter constructs identified an interleukin (IL)-1beta-responsive enhancer region between -2,180 bp and -2,478 bp. Mutation of either of the two nuclear factor (NF)-kappaB sites present in this region abrogated IL-1beta-induced MCP-1 promoter activity. Binding of NF-kappaB to the two sites was shown in vitro by gel shift assays, while supershift assays revealed the presence of p65/p50 heterodimers and p65 homodimers. In vivo binding of NF-kappaB was confirmed by chromatin immunoprecipitation assay. Blocking of NF-kappaB activation in cytokine-exposed primary beta-cells by an adenovirus overexpressing a nondegradable form of IkappaBalpha or by pyrrolidine dithiocarbamate decreased IL-1beta-induced MCP-1 mRNA expression. We conclude that NF-kappaB plays an important role for MCP-1 expression in beta-cells. This transcription factor may be an interesting target for ex vivo gene therapy before islet transplantation.
    Diabetes 03/2003; 52(2):348-55. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: : The β cell fate following immune-mediated damage depends on an intricate pattern of dozens of genes up- or downregulated in parallel and/or sequentially. We are utilizing microarray analysis to clarify the pattern of gene expression in primary rat β cells exposed to the proapoptotic cytokines, IL-1β and/or IFN-γ. The picture emerging from these experiments is that β cells are not passive bystanders of their own destruction. On the contrary, β cells respond to damage by activating diverse networks of transcription factors and genes that may either lead to apoptosis or preserve viability. Of note, cytokine-exposed β cells produce and release chemokines that may contribute to the homing and activation of T cells and macrophages during insulitis. Several of the effects of cytokines depend on the activation of the transcription factor, NF-κB. NF-κB blocking prevents cytokine-induced β cell death, and characterization of NF-κB-dependent genes by microarray analysis indicated that this transcription factor controls diverse networks of transcription factors and effector genes that are relevant for maintenance of β cell differentiated status, cytosolic and ER calcium homeostasis, attraction of mononuclear cells, and apoptosis. Identification of this and additional “transcription factor networks” is being pursued by cluster analysis of gene expression in insulin-producing cells exposed to cytokines for different time periods. Identification of complex gene patterns poses a formidable challenge, but is now technically feasible. These accumulating evidences may finally unveil the molecular mechanisms regulating the β cell “decision” to undergo or not apoptosis in early T1DM.
    Annals of the New York Academy of Sciences 01/2003; 1005(1):55-74. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral infections may trigger the autoimmune assault leading to type 1 diabetes mellitus. Double-stranded RNA (dsRNA) is produced by many viruses during their replicative cycle. The dsRNA, tested as synthetic poly(IC) (PIC), in synergism with the proinflammatory cytokines interferon-gamma (IFN-gamma) and/or IL-1 beta, results in nitric oxide production, Fas expression, beta-cell dysfunction, and death. Activation of the transcription nuclear factor-kappa B (NF-kappa B) is required for PIC-induced inducible nitric oxide synthase expression in beta-cells, and we hypothesized that this transcription factor may also participate in PIC-induced Fas expression and beta-cell apoptosis. This hypothesis, and the possibility that PIC induces expression of additional chemokines and cytokines (previously reported as NF-kappa B dependent) in pancreatic beta-cells, was investigated in the present study. We observed that the PIC-responsive region in the Fas promoter is located between nucleotides -223 and -54. Site-directed mutations at the NF-kappa B and CCAAT/enhancer binding protein-binding sites prevented PIC-induced Fas promoter activity. Increased Fas promoter activity was paralleled by enhanced susceptibility of PIC + cytokine-treated beta-cells to apoptosis induced by Fas ligand. beta-Cell infection with the NF-kappa B inhibitor AdI kappa B((SA)2) prevented both necrosis and apoptosis induced by PIC + IL-1 beta or PIC + IFN-gamma. Messenger RNAs for several chemokines and one cytokine were induced by PIC, alone or in combination with IFN-gamma, in pancreatic beta-cells. These included IP-10, interferon-gamma-inducible protein-10, IL-15, macrophage chemoattractant protein-1, fractalkine, and macrophage inflammatory protein-3 alpha. There was not, however, induction of IL-1 beta expression. We propose that dsRNA, generated during a viral infection, may contribute for beta-cell demise by both inducing expression of chemokines and IL-15, putative contributors for the build-up of insulitis, and by synergizing with locally produced cytokines to induce beta-cell apoptosis. Activation of the transcription factor NF-kappa B plays a central role in at least part of the deleterious effects of dsRNA in pancreatic beta-cells.
    Endocrinology 05/2002; 143(4):1225-34. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral infections may trigger the autoimmune assault leading to type 1 diabetes mellitus. Double-stranded RNA (dsRNA) is produced by many viruses during their replicative cycle. The dsRNA, tested as synthetic poly(IC) (PIC), in synergism with the proinflammatory cytokines interferon- (IFN-) and/or IL- 1, results in nitric oxide production, Fas expression, -cell dysfunction, and death. Activation of the transcription nu- clear factor-B (NF-B) is required for PIC-induced inducible nitric oxide synthase expression in -cells, and we hypothe- sized that this transcription factor may also participate in PIC-induced Fas expression and-cell apoptosis. This hypoth- esis, and the possibility that PIC induces expression of addi- tional chemokines and cytokines (previously reported as NF-B dependent) in pancreatic -cells, was investigated in the present study. We observed that the PIC-responsive re- gion in the Fas promoter is located between nucleotides 223 and 54. Site-directed mutations at the NF-B and CCAAT/ enhancer binding protein-binding sites prevented PIC- induced Fas promoter activity. Increased Fas promoter ac- tivity was paralleled by enhanced susceptibility of PIC cytokine-treated -cells to apoptosis induced by Fas ligand. -Cell infection with the NF-B inhibitor AdIB(SA)2 pre- vented both necrosis and apoptosis induced by PIC IL-1 or PIC IFN-. Messenger RNAs for several chemokines and one cytokine were induced by PIC, alone or in combination with IFN-, in pancreatic -cells. These included IP-10, interferon- -inducible protein-10, IL-15, macrophage chemoattractant protein-1, fractalkine, and macrophage inflammatory pro- tein-3. There was not, however, induction of IL-1 expres- sion. We propose that dsRNA, generated during a viral infec- tion, may contribute for -cell demise by both inducing expression of chemokines and IL-15, putative contributors for the build-up of insulitis, and by synergizing with locally pro- duced cytokines to induce -cell apoptosis. Activation of the transcription factor NF-B plays a central role in at least part of the deleterious effects of dsRNA in pancreatic -cells. (Endocrinology 143: 1225-1234, 2002)
    Endocrinology 04/2002; 143(4):1225-1234. · 4.72 Impact Factor
  • Diabetes 01/2002; 52(2):348-355. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokine-induced beta-cell death is an important event in the pathogenesis of type 1 diabetes. The transcription factor nuclear factor-kappaB (NF-kappaB) is activated by interleukin-1beta (IL-1beta), and its activity promotes the expression of several beta-cell genes, including pro- and anti-apoptotic genes. To elucidate the role of cytokine (IL-1beta + gamma-interferon [IFN-gamma])-induced expression of NF-kappaB in beta-cell apoptosis, rat beta-cells were infected with the recombinant adenovirus AdIkappaB((SA)2), which contained a nondegradable mutant form of inhibitory kappaB (IkappaB((SA)2), with S32A and S36A) that locks NF-kappaB in a cytosolic protein complex, preventing its nuclear action. Expression of IkappaB((SA)2) inhibited cytokine-stimulated nuclear translocation and DNA-binding of NF-kappaB. Cytokine-induced gene expression of several NF-kappaB targets, namely inducible nitric oxide synthase, Fas, and manganese superoxide dismutase, was prevented by AdIkappaB((SA)2), as established by reverse transcriptase-polymerase chain reaction, protein blot, and measurement of nitrite in the medium. Finally, beta-cell survival after IL-1beta + IFN-gamma treatment was significantly improved by IkappaB((SA)2) expression, mostly through inhibition of the apoptotic pathway. Based on these findings, we conclude that NF-kappaB activation, under in vitro conditions, has primarily a pro-apoptotic function in beta-cells.
    Diabetes 11/2001; 50(10):2219-24. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice with cardiac-specific overexpression of signal transducer and activator of transcription 3 (STAT3) are resistant to doxorubicin-induced damage. The STAT3 signal may be involved in the detoxification of reactive oxygen species (ROS). The effects of leukemia inhibitory factor (LIF) or adenovirus-mediated transfection of constitutively activated STAT3 (caSTAT3) on the intracellular ROS formation induced by hypoxia/reoxygenation (H/R) were examined using rat neonatal cardiomyocytes. Either LIF treatment or caSTAT3 significantly suppressed the increase of H/R-induced ROS evaluated by 2',7'-dichlorofluorescin diacetate fluorescence. To assess whether ROS are really involved in H/R-induced cardiomyocyte injury, the amount of creatine phosphokinase in cultured medium was examined. Both LIF treatment and caSTAT3 significantly decreased H/R-induced creatine phosphokinase release. These results indicate that the gp130/STAT3 signal protects H/R-induced cardiomyocyte injury by scavenging ROS generation. To investigate the mechanism of scavenging ROS, the effects of LIF on the induction of antioxidant enzymes were examined. LIF treatment significantly increased the expression of manganese superoxide dismutase (MnSOD) mRNA, whereas the expression of the catalase and glutathione peroxidase genes were unaffected. This induction of MnSOD mRNA expression was completely blocked by adenovirus-mediated transfection of dominant-negative STAT3. Moreover, caSTAT3 augmented MnSOD mRNA and its enzyme activity. In addition, the antisense oligodeoxyribonucleotide to MnSOD significantly inhibited both LIF and caSTAT3-mediated protective effects. The activation of STAT3 induces a protective effect on H/R-induced cardiomyocyte damage, mainly by inducting MnSOD. The STAT3-mediated signal is proposed as a therapeutical target of ROS-induced cardiomyocyte injury.
    Circulation 09/2001; 104(9):979-81. · 15.20 Impact Factor
  • M I Darville, D L Eizirik
    [Show abstract] [Hide abstract]
    ABSTRACT: Fas-mediated cell death may play a role in the autoimmune destruction of pancreatic beta-cells in type 1 diabetes. beta-Cells do not express Fas under physiological conditions, but Fas mRNA and protein are induced in cytokine-exposed mouse and human islets, rendering the beta-cells susceptible to Fas ligand-induced apoptosis. The aim of the present study was to investigate the molecular regulation of Fas by cytokines in rat beta-cells and in insulin-producing RINm5F cells. Fas mRNA expression was increased 15-fold in fluorescence-activated cell sorting-purified rat beta-cells exposed to interleukin (IL)-1beta, whereas gamma-interferon had no effect. Transfection experiments of rat Fas promoter-luciferase reporter constructs into purified rat beta-cells and RINm5F insulinoma cells identified an IL-1beta-responsive region between nucleotides -223 and -54. Inactivation of two adjacent NF-kappaB and C/EBP sites in this region abolished IL-1beta-induced Fas promoter activity in RINm5F cells. Binding of NF-kappaB and C/EBP factors to their respective sites was confirmed by gel shift assays. In cotransfection experiments, NF-kappaB p65 transactivated the Fas promoter. NF-kappaB p50 and C/EBPbeta overexpression had no effect by themselves on the Fas promoter activity, but when cotransfected with p65, each factor inhibited transactivation by p65. These results suggest a critical role for NF-kappaB and C/EBP factors in cytokine-regulation of Fas expression in insulin-producing cells.
    Diabetes 09/2001; 50(8):1741-8. · 7.90 Impact Factor
  • D Liu, M Darville, D L Eizirik
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by progressive destruction of insulin-producing pancreatic beta-cells. Both viral infections and the cytokines interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) have been suggested as potential mediators of beta-cell death in early T1DM. We presently investigated whether the viral replicative intermediate double stranded RNA [here used as synthetic polyinosinic-polycytidylic acid (PIC)] modifies the effects of IL-1beta and IFN-gamma on gene expression and viability of rat pancreatic beta-cells. For this purpose, fluorescence-activated cell sorting-purified rat beta-cells were exposed for 6-16 h (study of gene expression by RT-PCR) or 6-9 days (study of viability by nuclear dyes) to PIC and/or IL-1beta and IFN-gamma. PIC increased the expression of Fas and Mn superoxide dismutase messenger RNAs by 5- to 10-fold. IL-1beta and a combination of PIC and IFN-gamma (but not PIC or IFN-gamma alone) induced expression of inducible nitric oxide (NO) synthase (iNOS) and consequent NO production. Induction of iNOS expression by PIC and IFN-gamma requires nuclear factor-kappaB activation, as suggested by transfection experiments with iNOS promoter-luciferase reporter constructs into primary beta-cells. Combinations of IL-1beta plus IFN-gamma, PIC plus IFN-gamma, or PIC plus IL-1beta induced a 2- to 3-fold increase in the number of apoptotic beta-cells. Blocking of iNOS activity significantly decreased PIC- plus IL-1beta-induced, but not PIC- plus IFN-gamma-induced, apoptosis. In conclusion, PIC alone or in combination with cytokines modifies the expression of several genes in pancreatic beta-cells. Two of these genes, Fas and iNOS, may contribute to beta-cell death. The transcription factor nuclear factor-kappaB is required for PIC-induced iNOS expression. PIC has an additive effect on cytokine-induced beta-cell death by both NO-dependent (in the case of IL-1beta) and NO-independent (in the case of IFN-gamma) mechanisms. These findings suggest that viral intermediates in synergism with local cytokine production may play an important role in beta-cell apoptosis in early T1DM.
    Endocrinology 07/2001; 142(6):2593-9. · 4.72 Impact Factor
  • Source
    DONGBO LIU, MARTINE DARVILLE, DECIO L. EIZIRIK
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by progressive destruction of insulin-producing pancreatic b-cells. Both viral infections and the cytokines interleukin-1b (IL-1b) and interferon-g (IFN-g) have been suggested as potential mediators of b-cell death in early T1DM. We presently investigated whether the viral replicative intermediate double stranded RNA (here used as synthetic polyinosinic-polycytidylic acid (PIC)) modifies the effects of IL-1b and IFN-g on gene expression and viability of rat pancreatic b-cells. For this purpose, fluorescence-activated cell sorting-purified rat b-cells were exposed for 6 -16 h (study of gene expression by RT-PCR) or 6 -9 days (study of viability by nuclear dyes) to PIC and/or IL-1b and IFN-g. PIC increased the expression of Fas and Mn su- peroxide dismutase messenger RNAs by 5- to 10-fold. IL-1b and a combination of PIC and IFN-g (but not PIC or IFN-g alone) induced expression of inducible nitric oxide (NO) synthase (iNOS) and con- sequent NO production. Induction of iNOS expression by PIC and IFN-g requires nuclear factor-kB activation, as suggested by trans- fection experiments with iNOS promoter-luciferase reporter con- structs into primary b-cells. Combinations of IL-1b plus IFN-g, PIC plus IFN-g, or PIC plus IL-1b induced a 2- to 3-fold increase in the number of apoptotic b-cells. Blocking of iNOS activity significantly decreased PIC- plus IL-1b-induced, but not PIC- plus IFN-g-induced, apoptosis. In conclusion, PIC alone or in combination with cytokines modifies the expression of several genes in pancreatic b-cells. Two of these genes, Fas and iNOS, may contribute to b-cell death. The transcrip- tion factor nuclear factor-kB is required for PIC-induced iNOS ex- pression. PIC has an additive effect on cytokine-induced b-cell death by both NO-dependent (in the case of IL-1b) and NO-independent (in the case of IFN-g) mechanisms. These findings suggest that viral intermediates in synergism with local cytokine production may play an important role in b-cell apoptosis in early T1DM. (Endocrinology 142: 2593-2599, 2001)
    Endocrinology 06/2001; 142(6):2593-2599. · 4.72 Impact Factor
  • Source
    D L Eizirik, M I Darville
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased evidence suggests that apoptosis is the main mode of beta-cell death in early type 1 diabetes. Cytokines mediate beta-cell apoptosis, and in this article, we discuss some of the cytokine-modified genes that may contribute to beta-cell survival or death. The gene encoding for the inducible form of nitric oxide synthase is induced by interleukin (IL)-1beta or IL-1beta plus gamma-interferon in rodent and human islets, respectively. This leads to nitric oxide (NO) formation, which contributes to a major extent to beta-cell necrosis and to a minor extent to the process of beta-cell apoptosis. The main mode of cell death induced by cytokines in human beta-cells is apoptosis, whereas cytokines lead to both necrosis and apoptosis in rat and mouse beta-cells. It is suggested that the necrotic component in rodent islets is due to NO-induced mitochondrial impairment and consequent decreased ATP production. Human islets, possessing better antioxidant defenses, are able to preserve glucose oxidation and ATP production, and can thus complete the apoptotic program after the death signal delivered by cytokines. We propose that this death signal results from cytokine-induced parallel and/or sequential changes in the expression of multiple proapoptotic and prosurvival genes. The identity of these "gene modules" and of the transcription factors regulating them remains to be established.
    Diabetes 03/2001; 50 Suppl 1:S64-9. · 7.90 Impact Factor
  • Source
    M I Darville, D Liu, M C Chen, D L Eizirik
    Diabetes 03/2001; 50 Suppl 1:S83. · 7.90 Impact Factor

Publication Stats

1k Citations
142.79 Total Impact Points

Institutions

  • 2004
    • Université Libre de Bruxelles
      • Laboratory of Experimental Medicine (LABOMEDEX)
      Brussels, BRU, Belgium
  • 1998–2002
    • Vrije Universiteit Brussel
      • Department of Metabolism and Endocrinology
      Bruxelles, Brussels Capital Region, Belgium