M A Rashid

Kyung Hee University, Seoul, Seoul, South Korea

Are you M A Rashid?

Claim your profile

Publications (5)37.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have reported that the generation of reactive oxygen species (ROS) increases during the differentiation of muscle-derived C2C12 cells. Peroxiredoxin-2 (Prx-2) is an abundant mammalian enzyme that protects against oxidative stress. However, the role of Prx-2 in muscle differentiation has not been investigated. In this study, we demonstrated that Prx-2 expression increases during muscle differentiation and regeneration in response to exogenous H(2)O(2). This increase occurs only in myoblast cell lines because no increase in Prx-2 expression was observed in the NIH3T3, MEF, Chang, or HEK293 cell lines. The antioxidants, N-acetyl L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron), both suppressed myogenesis and Prx-2 expression. Moreover, Prx-2 was upregulated at the transcriptional level by NF-κB during the differentiation of muscle-derived C2C12 cells. We also found that inhibition of phosphatidylinositol 3-kinase (PI3K) blocks NF-κB activation and suppresses Prx-2 expression. Interestingly, Prx-2 knockdown increased the expression levels of other antioxidant enzymes, including all of the other Prx family member, thioredoxin-1 (Trx-1) and catalase, but also enhanced the accumulation of endogenous ROS during muscle differentiation. Innovation: In this study, we demonstrated for the first time that Prx-2 is unregulated during the muscle differentiation and regeneration. Prx-2 is upregulated via the PI3K/NF-κB pathway and attenuates oxidative stress during muscle differentiation and regeneration.
    Antioxidants & Redox Signaling 09/2011; 16(3):245-61. · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial reactive oxygen species (mROS) have been considered detrimental to cells. However, their physiological roles as signaling mediators have not been thoroughly explored. Here, we investigated whether mROS generated from mitochondrial electron transport chain (mETC) complex I stimulated muscle differentiation. Our results showed that the quantity of mROS was increased and that manganese superoxide dismutase (MnSOD) was induced via NF-κB activation during muscle differentiation. Mitochondria-targeted antioxidants (MitoQ and MitoTEMPOL) and mitochondria-targeted catalase decreased mROS quantity and suppressed muscle differentiation without affecting the amount of ATP. Mitochondrial alterations, including the induction of mitochondrial transcription factor A and an increase in the number and size of mitochondria, and functional activations were observed during muscle differentiation. In particular, increased expression levels of mETC complex I subunits and a higher activity of complex I than other complexes were observed. Rotenone, an inhibitor of mETC complex I, decreased the mitochondrial NADH/NAD(+) ratio and mROS levels during muscle differentiation. The inhibition of complex I using small interfering RNAs and rotenone reduced mROS levels, suppressed muscle differentiation, and depleted ATP levels with a concomitant increase in glycolysis. From these results, we conclude that complex I-derived O(2)·(-), produced through reverse electron transport due to enhanced metabolism and a high activity of complex I, was dismutated into H(2)O(2) by MnSOD induced via NF-κB activation and that the dismutated mH(2)O(2) stimulated muscle differentiation as a signaling messenger.
    Cell Research 03/2011; 21(5):817-34. · 10.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial oxidative damage is thought to play a key role in pancreatic β-cell failure in the pathogenesis of type 2 diabetes. Despite this, the potential of mitochondria-targeted antioxidants to protect pancreatic β-cells against oxidative stress has not yet been studied. Therefore, we investigated if mitochondria-targeted antioxidants protect pancreatic β-cells such as RINm5F and HIT-T15 cells against oxidative stress under glucotoxic and glucolipotoxic conditions. When β-cells were incubated under these conditions, the expression levels of mitochondrial electron transport chain complex subunits, mitochondrial antioxidant enzymes (such as MnSOD and Prx3), β-cell apoptosis, lipogenic enzymes (such as ACC, FAS and ABCA1), intracellular lipid accumulation, oxidative stress, ER stress, mitochondrial membrane depolarization, nuclear NF- κB and sterol regulatory element binding protein 1c (SREBP1c) were all increased, in parallel with decreases in intracellular ATP content, citrate synthase enzymatic activity and glucose-stimulated insulin secretion. These changes were consistent with elevated mitochondrial oxidative stress, and incubation with the mitochondria-targeted antioxidants, MitoTempol or Mitoquinone (MitoQ), prevented these effects. In conclusion, mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress, promote their survival, and increase insulin secretion in cell models of the glucotoxicity and glucolipotoxicity associated with Type 2 diabetes.
    Cellular Physiology and Biochemistry 01/2011; 28(5):873-86. · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbonyl reductase 1 (CBR1) plays an important role in the detoxification of reactive lipid aldehydes. Oxidative stress has been implicated in the pathogenesis of pancreatic β-cell failure. However, the functional role of CBR1 in pancreatic β-cell failure has not been studied yet. Therefore, we investigated the role of CBR1 in pancreatic β-cell failure under glucotoxic and glucolipotoxic conditions. Under both conditions, knockdown of CBR1 by specific siRNA increased β-cell apoptosis, expression of lipogenic enzymes (such as ACC, FAS, and ABCA1), intracellular lipid accumulation, oxidative stress, ER stress, and nuclear SREBP1c, but decreased glucose-stimulated insulin secretion. In contrast, overexpression of CBR1 showed the opposite effects. The antioxidants N-acetyl-l-cysteine and Tiron, as well as the FAS inhibitor cerulenin, reversed the effects of CBR1 knockdown. Interestingly, the expression level and enzyme activity of CBR1 were significantly decreased in pancreatic islets of db/db mice, compared with those of wild-type mice. In conclusion, CBR1 protects pancreatic β-cells against oxidative stress and promotes their survival in glucotoxicity and glucolipotoxicity.
    Free Radical Biology & Medicine 11/2010; 49(10):1522-33. · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human carbonyl reductase1 (CBR1) has been reported to protect cells against lipid peroxidation. Since human hepatocellular carcinoma (HCC) cells are under oxidative stress in hypoxic conditions, we tested if CBR1 is upregulated by hypoxia inducible factor (HIF)-1α, helps tumor growth under hypoxia, and renders chemoresistance to cisplatin and doxorubicin in HCC. Luciferase, EMSA, and chromatin immunoprecipitation (ChIP) assays were performed to analyze whether HIF-1α transactivates CBR1 promoter. CBR1 overexpression, siRNA, and inhibitors were used to study the role of CBR1 in tumor survival under hypoxia and chemoresistance to cisplatin and doxorubicin in HCC. FACS and Western blot analysis for oxidative stress markers were performed to measure ROS. Immunohistochemistry (IHC) was performed to analyze CBR1 expression in 78 cases of HCC and 123 cases of colon cancer tissues. The CBR1 promoter was activated by HIF-1α. CBR1 overexpression enhanced cell survival by decreasing oxidative stress under hypoxia, cisplatin, and doxorubicin treatment. CBR1-siRNA increased apoptosis via increasing oxidative stress. Combinational therapy of CBR1 inhibitors with cisplatin or doxorubicin enhanced cell death in HCC cells. IHC showed CBR1 overexpression in 56 (72%) out of 78 HCC and 88 (72%) out of 123 colon cancer cases. Overexpressed CBR1 by HIF-1α plays important roles in tumor growth under hypoxia and chemoresistance to anticancer drugs. The inhibition of CBR1 by specific inhibitors enhances anticancer drug efficacy in HCC. Therefore, we concluded that CBR1 is a good molecular target for the development of anticancer drugs for HCC patients.
    Journal of Hepatology 09/2010; 54(2):328-39. · 9.86 Impact Factor