Ludger Klein-Hitpass

University of Duisburg-Essen, Essen, North Rhine-Westphalia, Germany

Are you Ludger Klein-Hitpass?

Claim your profile

Publications (137)789.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: WNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT signaling pathway. Its expression is known to affect proliferation and differentiation of human mesenchymal stromal cells (hMSCs), which are fundamental for the development and maintenance of the musculoskeletal system. Whereas a dysregulated, excessive expression of WISP1 often reflects its oncogenic potential via the inhibition of apoptosis, our study emphasizes the importance of WISP1 signaling for the survival of primary human cells. We have established the efficient and specific down-regulation of endogenous WISP1 transcripts by gene silencing in hMSCs and observed cell death as a consequence of WISP1 deficiency. This was confirmed by Annexin V staining for apoptotic cells. DNA microarray analyses of WISP1 down-regulated versus control samples revealed several clusters of differentially expressed genes important for apoptosis induction such as TNF-related apoptosis-inducing ligand 1 (TRAIL) and the corresponding apoptosis-inducing receptors TRAIL-R1 and -R2. An increased expression of TRAIL and its receptors TRAIL-R1 and -R2 in WISP1-deficient hMSCs was confirmed by immunocytofluorescence. Accordingly, WISP1 deficiency is likely to cause TRAIL-induced apoptosis. This is an important novel finding, which suggests that WISP1 is indispensable for the protection of healthy hMSCs against TRAIL-induced apoptosis.
    Gene 09/2014; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma, a childhood cancer that originates from neural crest-derived cells, is the most common deadly solid tumor of infancy. Amplification of the MYCN oncogene, which occurs in approximately 20-25% of human neuroblastomas, is the most prominent genetic marker of high-stage disease. The availability of valid preclinical in vivo models is a prerequisite to develop novel targeted therapies. We here report on the generation of transgenic mice with Cre-conditional induction of MYCN in dopamine β-hydroxylase-expressing cells, termed LSL-MYCN;Dbh-iCre. These mice develop neuroblastic tumors with an incidence of >75%, regardless of strain background. Molecular profiling of tumors revealed upregulation of the MYCN-dependent miR-17-92 cluster as well as expression of neuroblastoma marker genes, including tyrosine hydroxylase and the neural cell adhesion molecule 1. Gene set enrichment analyses demonstrated significant correlation with MYC-associated expression patterns. Array comparative genome hybridization showed that chromosomal aberrations in LSL-MYCN;Dbh-iCre tumors were syntenic to those observed in human neuroblastomas. Treatment of a cell line established from a tumor derived from a LSL-MYCN;Dbh-iCre mouse with JQ1 or MLN8237 reduced cell viability and demonstrated oncogene addiction to MYCN. Here we report establishment of the first Cre-conditional human MYCN-driven mouse model for neuroblastoma that closely recapitulates the human disease with respect to tumor localization, histology, marker expression and genomic make up. This mouse model is a valuable tool for further functional studies and to assess the effect of targeted therapies.Oncogene advance online publication, 1 September 2014; doi:10.1038/onc.2014.269.
    Oncogene 09/2014; · 8.56 Impact Factor
  • Source
    Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis 07/2014; · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imprinting of the human RB1 gene is due to the presence of a differentially methylated CpG island (CGI) in intron 2, which is part of a retrocopy derived from the PPP1R26 gene on chromosome 9. The murine Rb1 gene does not have this retrocopy and is not imprinted. We have investigated whether the RB1/Rb1 locus is unique with respect to these differences. For this we have compared the CGIs from human and mouse by in silico analyses. We have found that the human genome does not only contain more CGIs than the mouse, but the proportion of intronic CGIs is also higher (7.7% versa 3.5%). At least 2033 human intronic CGIs are not present in the mouse. Among these CGIs, 104 show sequence similarities elsewhere in the human genome, which suggests that they arose from retrotransposition. We could narrow down the time points when most of these CGIs appeared during evolution. Their methylation status was analysed in two monocyte methylome datasets from whole genome bisulfite sequencing and in 18 published methylomes. Four CGIs, which are located in the RB1, ASRGL1, PARP11 and PDXDC1 genes, occur as methylated and unmethylated copies. In contrast to imprinted methylation at the RB1 locus, differential methylation of the ASRGL1 and PDXDC1 CGIs appears to be sequence-dependent. Our study supports the notion that the epigenetic fate of the retrotransposed DNA depends on its sequence and selective forces at the integration site.
    Genome Biology and Evolution 06/2014; · 4.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown previously that aminocoumarin antibiotics such as novobiocin lead to immediate downregulation of recA expression and thereby inhibit the SOS response, mutation frequency and recombination capacity in Staphylococcus aureus. Aminocoumarins function by inhibiting the ATPase activity of DNA gyrase subunit B with a severe impact on DNA supercoiling. Here, we have analysed the global impact of the DNA relaxing agent novobiocin on gene expression in S. aureus. Using a novobiocin-resistant mutant, it became evident that the change in recA expression is due to gyrase inhibition. Microarray analysis and northern blot hybridisation revealed that the expression levels of a distinct set of genes were increased (e.g., recF-gyrB-gyrA, the rib operon and the ure operon) or decreased (e.g., arlRS, recA, lukA, hlgC and fnbA) by novobiocin. The two-component ArlRS system was previously found to decrease the level of supercoiling in S. aureus. Thus, downregulation of arlRS might partially compensate for the relaxing effect of novobiocin. Global analysis and gene mapping of supercoiling-sensitive genes did not provide any indication that they are clustered in the genome. Promoter fusion assays confirmed that the responsiveness of a given gene is intrinsic to the promoter region but independent of the chromosomal location. The results indicate that the molecular properties of a given promoter, rather than the chromosomal topology, dictate the responsiveness to changes in supercoiling in the pathogen Staphylococcus aureus.
    BMC Genomics 04/2014; 15(1):291. · 4.40 Impact Factor
  • Acta Neuropathologica 02/2014; · 9.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5-/-) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5-/- mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5-/- mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.
    PLoS ONE 01/2014; 9(7):e103250. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells.
    Cancer Genetics 09/2013; · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered numbers and functions of T cells have previously been demonstrated in chronic lymphocytic leukemia (CLL) patients. However, dynamics and specific T-cell subset alterations have not been studied in great detail. Therefore, we studied CLL blood lymphocyte subsets of individual patients in a longitudinal manner. Dynamic expansions of blood CD4 (+) and CD8 (+) T-cell numbers were consistently associated with a progressively increasing CLL leukemic compartment. Interestingly, the T-cell subset expansion over time was more pronounced in CD38 (+) CLL. Additionally, we performed gene expression profiling of CD3 (+) T cells of CLL patients and normal donors. Using gene set enrichment analysis, we found significant enrichment of genes with higher expression in CLL T cells within CD8(+) effector memory and terminal effector T-cell gene signatures. In agreement with these data, we observed a marked expansion of phenotypic CD8 (+) effector memory T cells in CLL by flow cytometry. Moreover, we observed that increments of CD8 (+) effector memory T cells in human CLL and also mouse CLL (Eμ-TCL1 model) were due to an expansion of the inhibitory killer cell lectin-like receptor G1 (KLRG1) expressing cellular subset. Furthermore, higher plasma levels of the natural KLRG1 ligand E-cadherin were detected in CLL patients compared to normal donor controls. The predominance of KLRG1(+) expression within CD8(+) T cells in conjunction with increased systemic soluble E-cadherin might significantly contribute to CLL immune dysfunction and might additionally represent an important component of the CLL microenvironment.
    Cancer Immunology and Immunotherapy 09/2013; · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes of the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.
    Human Molecular Genetics 08/2013; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. Since tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16(INK4A) . In order to identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fibre content and a slower turnover of actin filaments. Lastly, based on expression analyses of microarray candidates, we suggest that dysregulated cell-matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets. This article is protected by copyright. All rights reserved.
    Aging cell 07/2013; · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression profiles and chromosome 3 copy number divide uveal melanomas into two distinct classes correlating with prognosis. Using exome sequencing, we identified recurrent somatic mutations in EIF1AX and SF3B1, specifically occurring in uveal melanomas with disomy 3, which rarely metastasize. Targeted resequencing showed that 24 of 31 tumors with disomy 3 (77%) had mutations in either EIF1AX (15; 48%) or SF3B1 (9; 29%). Mutations were infrequent (2/35; 5.7%) in uveal melanomas with monosomy 3, which are associated with poor prognosis. Resequencing of 13 uveal melanomas with partial monosomy 3 identified 8 tumors with a mutation in either SF3B1 (7; 54%) or EIF1AX (1; 8%). All EIF1AX mutations caused in-frame changes affecting the N terminus of the protein, whereas 17 of 19 SF3B1 mutations encoded an alteration of Arg625. Resequencing of ten uveal melanomas with disomy 3 that developed metastases identified SF3B1 mutations in three tumors, none of which targeted Arg625.
    Nature Genetics 06/2013; · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nager syndrome (MIM #154400) is the best-known preaxial acrofacial dysostosis, mainly characterized by craniofacial and preaxial limb anomalies. The craniofacial abnormalities mainly consist of downslanting palpebral fissures, malar hypoplasia, micrognathia, external ear anomalies, and cleft palate. The preaxial limb defects are characterized by radial and thumb hypoplasia or aplasia, duplication of thumbs and proximal radioulnar synostosis. Haploinsufficiency of SF3B4 (MIM *605593), which encodes SAP49, a component of the pre-mRNA spliceosomal complex, has recently been identified as the underlying cause of Nager syndrome. In our study, we performed exome sequencing in two and Sanger sequencing of SF3B4 in further ten previously unreported patients with the clinical diagnosis of Nager syndrome, including one familial case. We identified heterozygous SF3B4 mutations in seven out of twelve patients. Four of the seven mutations were shown to be de novo; in three individuals, DNA of both parents was not available. No familial mutations were discovered. Three mutations were nonsense, three were frameshift mutations and one T > C transition destroyed the translation start signal. In three of four SF3B4 negative families, EFTUD2 was analyzed, but no pathogenic variants were identified. Our results indicate that the SF3B4 gene is mutated in about half of the patients with the clinical diagnosis of Nager syndrome and further support genetic heterogeneity for this condition.
    Human Genetics 04/2013; · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soft tissue sarcomas (STS) are a heterogeneous group of malignant tumours representing 1% of all malignancies in adults. Therapy for STS should be individualised and multimodal, but complete surgical resection with clear margins remains the mainstay of therapy. Disseminated soft tissue sarcoma still represents a therapeutic dilemma. Commonly used chemotherapeutic agents such as doxorubicin and ifosfamide have proven to be effective in fewer than 30% in these cases. Therefore, we tested the apoptotic and anti‑proliferative in vitro effects of TNF-related apoptosis-inducing ligand (TRAIL) and taurolidine (TRD) on rhabdomyosarcoma (A-204), leiomyosarcoma (SK-LMS-1) and epithelioid cell sarcoma (VA-ES-BJ) cell lines. Viability, apoptosis and necrosis were quantified by FACS analysis (propidium iodide/Annexin V staining). Gene expression was analysed by DNA microarrays and the results validated for selected genes by rtPCR. Protein level changes were documented by western blot analysis. Cell proliferation was analysed by BrdU ELISA assay. The single substances TRAIL and TRD significantly induced apoptotic cell death and decreased proliferation in rhabdomyosarcoma and epithelioid cell sarcoma cells. The combined use of TRAIL and TRD resulted in a synergistic apoptotic effect in all three cell lines, especially in rhabdomyosarcoma cells leaving 18% viable cells after 48 h of incubation (p<0.05). Analysis of the differentially regulated genes revealed that TRD and TRAIL influence apoptotic pathways, including the TNF-receptor associated and the mitochondrial pathway. Microarray analysis revealed remarkable expression changes in a variety of genes, which are involved in different apoptotic pathways and cross talk to other pathways at multiple levels. This in vitro study demonstrates that TRAIL and TRD synergise in inducing apoptosis and inhibiting proliferation in different human STS cell lines. Effects on gene expression differ relevantly in the sarcoma entities. These results provide experimental support for in vivo trials assessing the effect of TRAIL and TRD in STS and sustain the approach of individualized therapy.
    International Journal of Oncology 01/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here, we describe a survival signaling pathway activated in stromal cells by contact to B cells from patients with chronic lymphocytic leukemia (CLL). The expression of protein kinase C (PKC)-βII and the subsequent activation of NF-κB in bone marrow stromal cells are prerequisites to support the survival of malignant B cells. PKC-β knockout mice are insusceptible to CLL transplantations, underscoring the in vivo significance of the PKC-βII-NF-κB signaling pathway in the tumor microenvironment. Upregulated stromal PKC-βII in biopsies from patients with CLL, acute lymphoblastic leukemia, and mantle cell lymphoma suggests that this pathway may commonly be activated in a variety of hematological malignancies.
    Cancer cell 01/2013; 23(1):77-92. · 25.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progranulin (Pgrn) is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN), is significantly higher expressed in aggressive CD38(+)ZAP-70(+) as compared to indolent CD38(-)ZAP-70(-) chronic lymphocytic leukemia (CLL) cases. Here, we measured Pgrn plasma concentrations by enzyme-linked immunosorbent assay (ELISA) in the Essen CLL cohort of 131 patients and examined Pgrn for association with established prognostic markers and clinical outcome. We found that high Pgrn plasma levels were strongly associated with adverse risk factors including unmutated IGHV status, expression of CD38 and ZAP-70, poor risk cytogenetics (11q-, 17p-) as detected by flourescence in situ hybridization (FISH) and high Binet stage. Pgrn as well as the aforementioned risk factors were prognostic for time to first treatment and overall survival in this series. Importantly, these results could be confirmed in the independent multicentric CLL1 cohort of untreated Binet stage A patients (n = 163). Here, multivariate analysis of time to first treatment revealed that high risk Pgrn (HR = 2.06, 95%-CI = 1.13-3.76, p = 0.018), unmutated IGHV status (HR = 5.63, 95%-CI = 3.05-10.38, p<0.001), high risk as defined by the study protocol (HR = 2.06, 95%-CI = 1.09-3.89, p = 0.026) but not poor risk cytogenetics were independent prognostic markers. In summary our results suggest that Pgrn is a novel, robust and independent prognostic marker in CLL that can be easily measured by ELISA.
    PLoS ONE 01/2013; 8(8):e72107. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B-let-7-MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.
    Nature Genetics 10/2012; · 35.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and - to a lesser and varying extent - in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.European Journal of Human Genetics advance online publication, 8 August 2012; doi:10.1038/ejhg.2012.168.
    European journal of human genetics: EJHG 08/2012; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disseminated fibrosarcoma still represents a therapeutic dilemma because of lack of effective cytostatics. Therefore we tested tumor necrosis factor related apoptosis-inducing ligand (TRAIL) and taurolidine, in combination with established and new chemotherapeutic agents on human fibrosarcoma (HT1080). Human fibrosarcoma cells (HT1080) were incubated with doxorubicin, mafosfamide and trabectedin both alone and in combination with taurolidine and TRAIL. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Cell proliferation was analysed using a bromodeoxyuridine (BrdU) ELISA assay. Single application of doxorubicin and trabectedin induced apoptotic cell death and significantly reduced the proliferation of HT1080 cells. In combination treatment, the addition of taurolidine and TRAIL resulted in a stronger reduction in the degree of cell viability when compared to single treatment. Trabectedin and taurolidine displayed a greater potential for inhibiting proliferation than did doxorubicin alone. When combined with TRAIL and taurolidine, treatment with doxorubicin and trabectedin demonstrated stronger apoptosis-inducing and antiproliferative effects.
    Anticancer research 07/2012; 32(7):2967-84. · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disruption of circadian rhythm is believed to play a critical role in cancer development. Cryptochrome 1 (CRY1) is a core component of the mammalian circadian clock and we have previously shown its deregulated expression in a subgroup of patients with chronic lymphocytic leukemia (CLL). Using real-time RT-PCR in a cohort of 76 CLL patients and 35 normal blood donors we now demonstrate that differential CRY1 mRNA expression in high-risk (HR) CD38+/immunoglobulin variable heavy chain gene (IgVH) unmutated patients as compared to low-risk (LR) CD38-/IgVH mutated patients can be attributed to down-modulation of CRY1 in LR CLL cases. Analysis of the DNA methylation profile of the CRY1 promoter in a subgroup of 57 patients revealed that CRY1 expression in LR CLL cells is silenced by aberrant promoter CpG island hypermethylation. The methylation pattern of the CRY1 promoter proved to have high prognostic impact in CLL where aberrant promoter methylation predicted a favourable outcome. CRY1 mRNA transcript levels did not change over time in the majority of patients where sequential samples were available for analysis. We also compared the CRY1 expression in CLL with other lymphoid malignancies and observed epigenetic silencing of CRY1 in a patient with B cell acute lymphoblastic leukemia (B-ALL).
    PLoS ONE 01/2012; 7(3):e34347. · 3.53 Impact Factor

Publication Stats

4k Citations
789.17 Total Impact Points

Institutions

  • 2006–2014
    • University of Duisburg-Essen
      • Faculty of Medicine
      Essen, North Rhine-Westphalia, Germany
  • 2007–2012
    • University of Wuerzburg
      Würzburg, Bavaria, Germany
  • 1991–2012
    • University Hospital Essen
      • Institut für Zellbiologie (Tumorforschung)
      Essen, North Rhine-Westphalia, Germany
  • 2011
    • Institut de recherches cliniques de Montréal
      Montréal, Quebec, Canada
  • 2004–2009
    • Max Planck Institute of Molecular Physiology
      • Department of Chemical Biology
      Dortmund, North Rhine-Westphalia, Germany
  • 2005
    • Universitätsmedizin Göttingen
      • Department of Hematology and Oncology
      Göttingen, Lower Saxony, Germany
  • 1988–1991
    • Baylor College of Medicine
      • Department of Molecular & Cellular Biology
      Houston, TX, United States