Luka Mesin

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States

Are you Luka Mesin?

Claim your profile

Publications (6)59.07 Total impact

  • Gabriel D Victora, Luka Mesin
    [Show abstract] [Hide abstract]
    ABSTRACT: Germinal centers (GCs) are the site of antibody affinity maturation, a process that involves complex clonal and cellular dynamics. Selection of B cells bearing higher-affinity immunoglobulins proceeds via a stereotyped pattern whereby B cells migrate cyclically between the GC's two anatomical compartments. This process occurs in a timeframe that is well suited to analysis by intravital microscopy, and much has been learned in recent years by use of these techniques. On a longer time scale, the diversity of B cell clones and variants within individual GCs is also thought to change as affinity maturation progresses; however, our understanding of clonal dynamics in individual GCs is limited. We discuss recent progress in the elucidation of clonal and cellular dynamics patterns.
    Current opinion in immunology 03/2014; 28C:90-96. · 10.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coeliac disease (CD), an enteropathy caused by cereal gluten ingestion, is characterized by CD4(+) T cells recognizing deamidated gluten and by antibodies reactive to gluten or the self-antigen transglutaminase 2 (TG2). TG2-specific immunoglobulin A (IgA) of plasma cells (PCs) from CD lesions have limited somatic hypermutation (SHM). Here we report that gluten-specific IgA of lesion-resident PCs share this feature. Monoclonal antibodies were expression cloned from single PCs of patients either isolated from cultures with reactivity to complex deamidated gluten antigen or by sorting with gluten peptide tetramers. Typically, the antibodies bind gluten peptides related to T-cell epitopes and many have higher reactivity to deamidated peptides. There is restricted VH and VL combination and usage among the antibodies. Limited SHM suggests that a common factor governs the mutation level in PCs producing TG2- and gluten-specific IgA. The antibodies have potential use for diagnosis of CD and for detection of gluten.
    Nature Communications 01/2014; 5:4041. · 10.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research.
    Frontiers in Immunology 01/2012; 3:313.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo-isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.
    Nature medicine 01/2012; 18(3):441-5. · 27.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the biology of Ab-secreting cells in the human small intestine, we examined Ab production of intestinal biopsies kept in culture. We found sustained IgA and IgM secretion as well as viable IgA- or IgM-secreting cells after >4 wk of culture. The Ab-secreting cells were nonproliferating and expressing CD27 and CD138, thus having a typical plasma cell phenotype. Culturing of biopsies without tissue disruption gave the highest Ab production and plasma cell survival suggesting that the environment regulates plasma cell longevity. Cytokine profiling of the biopsy cultures demonstrated a sustained presence of IL-6 and APRIL. Blocking of the activity of endogenous APRIL and IL-6 with BCMA-Fc and anti-human IL-6 Ab demonstrated that both these factors were essential for plasma cell survival and Ab secretion in the biopsy cultures. This study demonstrates that the human small intestine harbors a population of nonproliferating plasma cells that are instructed by the microenvironment for prolonged survival and Ab secretion.
    The Journal of Immunology 08/2011; 187(6):2867-74. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gut mucosal surface is efficiently protected by Abs, and this site represents one of the richest compartments of Ab-secreting cells in the body. A simple and effective method to generate Ag-specific human monoclonal Abs (hmAbs) from such cells is lacking. In this paper, we describe a method to generate hmAbs from single Ag-specific IgA- or IgM-secreting cells of the intestinal mucosa. We found that CD138-positive plasma cells from the duodenum expressed surface IgA or IgM. Using eGFP-labeled virus-like particles, we harnessed the surface Ig expression to detect rotavirus-specific plasma cells at low frequency (0.03-0.35%) in 9 of 10 adult subjects. Single cells were isolated by FACS, and as they were viable, further testing of secreted Abs by ELISPOT and ELISA indicated a highly specific selection procedure. Ab genes from single cells of three donors were cloned, sequenced, and expressed as recombinant hmAbs. Of 26 cloned H chain Ab genes, 22 were IgA and 4 were IgM. The genes were highly mutated, and there was an overrepresentation of the VH4 family. Of 10 expressed hmAbs, 8 were rotavirus-reactive (6 with K(d) < 1 × 10(-10)). Importantly, our method allows generation of hmAbs from cells implicated in the protection of mucosal surfaces, and it can potentially be used in passive vaccination efforts and for discovery of epitopes directly relevant to human immunity.
    The Journal of Immunology 10/2010; 185(9):5377-83. · 5.52 Impact Factor

Publication Stats

59 Citations
59.07 Total Impact Points

Institutions

  • 2014
    • Whitehead Institute for Biomedical Research
      Cambridge, Massachusetts, United States
  • 2011–2014
    • University of Oslo
      • Centre for Immune Regulation
      Kristiania (historical), Oslo County, Norway
  • 2010
    • Oslo University Hospital
      Kristiania (historical), Oslo County, Norway