Louis M Kunkel

Boston Children's Hospital, Boston, Massachusetts, United States

Are you Louis M Kunkel?

Claim your profile

Publications (179)1612.2 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner.
    Cell 11/2015; 163(5). DOI:10.1016/j.cell.2015.10.049 · 32.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current molecular genomic approaches to human genetic disorders have led to an explosion in the identification of the genes and their encoded proteins responsible for these disorders. The identification of the gene altered by mutations in Duchenne and Becker muscular dystrophy was one of the earliest examples of this paradigm. The nearly 30 years of research partly outlined here exemplifies the road that similar current gene discovery protocols will be expected to travel, albeit much more rapidly owing to improved diagnosis of genetic disorders and an understanding of the spectrum of mutations thought to cause them. The identification of the protein dystrophin has led to a new understanding of the muscle cell membrane and the proteins involved in membrane stability, as well as new candidate genes for additional forms of muscular dystrophy. Animal models identified with naturally occurring mutations and developed by genetic manipulation have furthered the understanding of disease progression and underlying pathology. The biochemistry and molecular analysis of patient samples have led to the different dystrophin-dependent and -independent therapies that are currently close to or in human clinical trials. The lessons learned from decades of research on dystrophin have benefited the field of human genetics. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 16 is August 31, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual review of genomics and human genetics 06/2015; 16(1). DOI:10.1146/annurev-genom-090314-025003 · 8.96 Impact Factor
  • Angela Lek · Fedik Rahimov · Peter L Jones · Louis M Kunkel ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Owing to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models emphasize only specific aspects of the disease, highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Molecular Medicine 03/2015; 21(5). DOI:10.1016/j.molmed.2015.02.011 · 9.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.
    Neuromuscular Disorders 03/2015; 25(5). DOI:10.1016/j.nmd.2015.02.012 · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dystrophinopathies result from mutations of the DMD gene that primarily affect skeletal muscle but also affect heart, brain, and smooth muscle. Advances in the genetic analysis of these disorders have improved diagnosis and genetic counseling and are leading to effective therapies. This chapter details the genetic factors underlying the etiology and pathogenesis of the dystrophinopathies, and discusses the heterogeneous clinical presentations seen in both males and females. The differential diagnosis and appropriate diagnostic testing strategies are also itemized.
    Neuromuscular Disorders of Infancy, Childhood, and Adolescence, 01/2015: pages 551-592; , ISBN: 9780124170445
  • Source
    Dataset: JCMM 2009
    Matthew S Alexander · Louis M Kunkel · Iris Eisenberg ·

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS), feature myogenic differentiation. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in the non-neoplastic and benign counterparts of GIST, RMS and LMS tumors, and DMD deletions inactivate larger dystrophin isoforms, including 427-kDa dystrophin, while preserving the expression of an essential 71-kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence and invadopodia formation, and dystrophin inactivation was found in 96%, 100% and 62% of metastatic GIST, embryonal RMS and LMS samples, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in the treatment of cancer.
    Nature Genetics 05/2014; 46(6). DOI:10.1038/ng.2974 · 29.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle-specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle.
    The Journal of clinical investigation 05/2014; 124(6). DOI:10.1172/JCI73579 · 13.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we identified family with sequence similarity 65, member B (Fam65b), as a protein transiently up-regulated during differentiation and fusion of human myogenic cells. Silencing of Fam65b expression results in severe reduction of myogenin expression and consequent lack of myoblast fusion. The molecular function of Fam65b and whether misregulation of its expression could be causative of muscle diseases are unknown. Protein pulldowns were used to identify Fam65b-interacting proteins in differentiating human muscle cells and regenerating muscle tissue. In vitro, human muscle cells were treated with histone-deacetylase (HDAC) inhibitors, and expression of Fam65b and interacting proteins was studied. Nontreated cells were used as controls. In vivo, expression of Fam65b was down-regulated in developing zebrafish to determine the effects on muscle development. Fam65b binds to HDAC6 and dysferlin, the protein mutated in limb girdle muscular dystrophy 2B. The tricomplex Fam65b-HDAC6-dysferlin is transient, and Fam65b expression is necessary for the complex to form. Treatment of myogenic cells with pan-HDAC or HDAC6-specific inhibitors alters Fam65b expression, while dysferlin expression does not change. Inhibition of Fam65b expression in developing zebrafish results in abnormal muscle, with low birefringence, tears at the myosepta, and increased embryo lethality. Fam65b is an essential component of the HDAC6-dysferlin complex. Down-regulation of Fam65b in developing muscle causes changes consistent with muscle disease.-Balasubramanian, A., Kawahara, G., Gupta, V. A., Rozkalne, A., Beauvais, A., Kunkel, L. M., Gussoni, E. Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation.
    The FASEB Journal 03/2014; 28(7). DOI:10.1096/fj.13-246470 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. More than 20 genes with autosomal recessive (LGMD2A to LGMD2Q) and autosomal dominant inheritance (LGMD1A to LGMD1H) have been mapped/identified to date. Mutations are known for six among the eight mapped autosomal dominant forms: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin-3), LGMD1D (desmin), LGMD1E (DNAJB6), and more recently for LGMD1F (transportin-3). Our group previously mapped the LGMD1G gene at 4q21 in a Caucasian-Brazilian family. We now mapped a Uruguayan family with patients displaying a similar LGMD1G phenotype at the same locus. Whole genome sequencing identified, in both families, mutations in the HNRPDL gene. HNRPDL is a heterogeneous ribonucleoprotein (hnRNP) family member, which participates in mRNA biogenesis and metabolism. Functional studies performed in S. cerevisiae showed that the loss of HRP1 (yeast orthologue) had pronounced effects on both protein levels and cell localizations, and yeast proteome revealed dramatic reorganization of proteins involved in RNA processing pathways. In vivo analysis showed that hnrpdl is important for muscle development in zebrafish, causing a myopathic phenotype when knocked down. The present study presents a novel association between a muscular disorder and a RNA-related gene and reinforces the importance of RNA binding/processing proteins in muscle development and muscle disease. Understanding the role of these proteins in muscle might open new therapeutic approaches for muscular dystrophies.
    Human Molecular Genetics 03/2014; 23(15). DOI:10.1093/hmg/ddu127 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity. To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis. Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/-) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues. Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/- mice mirror some, but not all, of the perturbed molecular pathways in the brain.
    Molecular Autism 02/2014; 5(1):16. DOI:10.1186/2040-2392-5-16 · 5.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy (FSHD) is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics.
    Human Molecular Genetics 01/2014; 23(12). DOI:10.1093/hmg/ddu028 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein, and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high throughput therapeutic drug screening for improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2,640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx(5cv) mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications.
    Human Molecular Genetics 11/2013; 23(7). DOI:10.1093/hmg/ddt579 · 6.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family.
    Neuromuscular Disorders 08/2013; 23(12). DOI:10.1016/j.nmd.2013.08.009 · 2.64 Impact Factor
  • Source

  • Source
    Fedik Rahimov · Louis M Kunkel ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes.
    The Journal of Cell Biology 05/2013; 201(4):499-510. DOI:10.1083/jcb.201212142 · 9.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by targeting multiple mRNAs that comprise of a single or multiple signaling pathway. Several miRNAs have been shown to regulate satellite cell activity, such as miRNA-489 which functions to maintain satellite cells in a quiescent state. While muscle-specific miRNAs have been identified, many of the molecular mechanisms that regulate myogenesis that are regulated by miRNAs still remain unknown. In this study, we have shown that miR-128a is highly expressed in brain and skeletal muscle, and increases during myoblast differentiation. MiR-128a was found to regulate the target genes involved in insulin signaling, which include: Insr, Irs1, and Pik3r1 at both the mRNA and protein level. Overexpression of miR-128a in myoblasts inhibited cell proliferation by targeting IRS1. Conversely, inhibition of miR-128a induced myotube maturation and myofiber hypertrophy in vitro and in vivo. Moreover, our results demonstrate that miR-128a expression levels are negatively controlled by tumor necrosis factor-alpha (TNF-α). TNF-α promoted myoblast proliferation and myotube hypertrophy by facilitating IRS1/Akt signaling via a direct decrease of miR-128a expression in both myoblasts and myotubes. In summary, we demonstrate that miR-128a regulates myoblast proliferation and myotube hypertrophy, and provides a novel mechanism through which IRS1-dependent insulin signaling is regulated in skeletal muscle.
    Journal of Cell Science 04/2013; 126(12). DOI:10.1242/jcs.119966 · 5.43 Impact Factor
  • Genri Kawahara · Louis M Kunkel ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a number of chemical and drug screens using zebrafish embryos have been published. Using zebrafish dystrophin mutants, we screened a chemical library for small molecules that modulate the muscle phenotype and identified seven small molecules that influence muscle pathology in dystrophin-null zebrafish. One chemical, aminophylline, which is known to be a non-selective phosphodiesterase (PDE) inhibitor, had the greatest ability to restore normal muscle structure and to up-regulate cAMP-dependent protein kinase (PKA) in treated dystrophin deficient fish. Our methodologies, which combine drug screening with assessment of the chemical effects by genotyping and staining with anti-dystrophin, provide a powerful means to identify template structures potentially relevant to the development of novel human muscular dystrophies therapeutics.
    Drug Discovery Today Technologies 03/2013; 10(1):e91-e96. DOI:10.1016/j.ddtec.2012.03.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism Spectrum Disorders (ASD) is a spectrum of highly heritable neurodevelopmental disorders in which known mutations contribute to disease risk in 20% of cases. Here, we report the results of the largest blood transcriptome study to date that aims to identify differences in 170 ASD cases and 115 age/sex-matched controls and to evaluate the utility of gene expression profiling as a tool to aid in the diagnosis of ASD. The differentially expressed genes were enriched for the neurotrophin signaling, long-term potentiation/depression, and notch signaling pathways. We developed a 55-gene prediction model, using a cross-validation strategy, on a sample cohort of 66 male ASD cases and 33 age-matched male controls (P1). Subsequently, 104 ASD cases and 82 controls were recruited and used as a validation set (P2). This 55-gene expression signature achieved 68% classification accuracy with the validation cohort (area under the receiver operating characteristic curve (AUC): 0.70 [95% confidence interval [CI]: 0.62-0.77]). Not surprisingly, our prediction model that was built and trained with male samples performed well for males (AUC 0.73, 95% CI 0.65-0.82), but not for female samples (AUC 0.51, 95% CI 0.36-0.67). The 55-gene signature also performed robustly when the prediction model was trained with P2 male samples to classify P1 samples (AUC 0.69, 95% CI 0.58-0.80). Our result suggests that the use of blood expression profiling for ASD detection may be feasible. Further study is required to determine the age at which such a test should be deployed, and what genetic characteristics of ASD can be identified.
    PLoS ONE 12/2012; 7(12):e49475. DOI:10.1371/journal.pone.0049475 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy characterized by an asymmetric progressive weakness and wasting of the facial, shoulder and upper arm muscles, frequently accompanied by hearing loss and retinal vasculopathy. FSHD is autosomal dominant disease linked to chromosome 4q35, but the causative gene remains controversial. DUX4 is a leading candidate gene as causative of FSHD. However, DUX4 expression is extremely low in FSHD muscle, and there is no DUX4 animal model that mirrors the pathology in human FSHD. Here we show that the misexpression of very low levels of human DUX4 in zebrafish development recapitulates the phenotypes seen in human FSHD patients. Microinjection of small amounts of human full-length DUX4 (DUX4-fl) mRNA into zebrafish fertilized eggs caused asymmetric abnormalities such as less pigmentation of the eyes, altered morphology of ears, developmental abnormality of fin muscle, disorganization of facial musculature and/or degeneration of trunk muscle later in development. Moreover, DUX4-fl expression caused aberrant localization of myogenic cells marked with α-actin promoter driven-EGFP outside somite boundary, especially in head region. These abnormalities were rescued by co-injection of short form of DUX4 (DUX4-s). Our results suggest that the misexpression of DUX4-fl, even at extremely low level, can recapitulate the phenotype observed in FSHD patients in a vertebrate model. These results strongly support the current hypothesis for a role of DUX4 in FSHD pathogenesis. We also propose that DUX4 expression during development is important to the pathogenesis of FSHD.
    Human Molecular Genetics 10/2012; 22(3). DOI:10.1093/hmg/dds467 · 6.39 Impact Factor

Publication Stats

17k Citations
1,612.20 Total Impact Points


  • 1985-2015
    • Boston Children's Hospital
      • • Manton Center of Orphan Disease Research
      • • Division of Genetics
      Boston, Massachusetts, United States
  • 1988-2014
    • Harvard University
      Cambridge, Massachusetts, United States
    • Children's Hospital of Richmond
      Ричмонд, Virginia, United States
  • 1987-2014
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1984-2013
    • Harvard Medical School
      • • Department of Genetics
      • • Department of Pediatrics
      Boston, Massachusetts, United States
  • 2000
    • Wolfson Childrens Hospital
      Jacksonville, Florida, United States
  • 1998
    • University of North Carolina at Chapel Hill
      • Department of Cell Biology and Physiology
      North Carolina, United States
  • 1990
    • Children's Hospital & Medical Center
      Omaha, Nebraska, United States
  • 1979-1982
    • Johns Hopkins University
      • Department of Medicine
      Baltimore, Maryland, United States
    • University of California, San Francisco
      • Department of Biochemistry and Biophysics
      San Francisco, California, United States