Lisa Woodbine

University of Sussex, Brighton, England, United Kingdom

Are you Lisa Woodbine?

Claim your profile

Publications (17)136.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10-200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1-5 mGy X-rays.
    Journal of the Royal Society, Interface / the Royal Society. 11/2014; 11(100).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation, microcephaly, and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4), Artemis, and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders, we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity, but not Artemis deficiency, were associated with markedly reduced reprogramming efficiency, which could be partially rescued by genetic complementation. Moreover, we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest, particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-, but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming, with a major role for LIG4 and DNA-PKcs and a minor, if any, for Artemis.
    Proceedings of the National Academy of Sciences of the United States of America. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency – (S)CID – due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology.
    DNA repair 01/2014; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defective V(D)J recombination and DNA double-strand break (DSB) repair severely impair the development of T-lymphocytes and B-lymphocytes. Most patients manifest a severe combined immunodeficiency during infancy. We report 2 siblings with combined immunodeficiency (CID) and immunodysregulation caused by compound heterozygous Artemis mutations, including an exon 1-3 deletion generating a null allele, and a missense change (p.T71P). Skin fibroblasts demonstrated normal DSB repair by gamma-H2AX analysis, supporting the predicted hypomorphic nature of the p.T71P allele. In addition to these two patients, 12 patients with Artemis-deficient CID were previously reported. All had significant morbidities including recurrent infections, autoimmunity, EBV-associated lymphoma, and carcinoma despite having hypomorphic mutants with residual Artemis expression, V(D)J recombination or DSB repair capacity. Nine patients underwent stem cell transplant and six survived, while four patients who did not receive transplant died. The progressive nature of immunodeficiency and genomic instability accounts for poor survival, and early HSCT should be considered.
    Clinical Immunology 08/2013; 149(3PB):464-474. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detection of γ-H2AX foci as a measure of DNA double strand break induction and repair provides the basis of a rapid approach to establish individual radiosensitivity. However, the assignment of criteria to define increased radiosensitivity is not straightforward. Experimental end points, analytical methods and proliferative status of the cells sampled for analysis are important. All these issues are addressed in the present study, which was prompted by a clinical request to assess the radiosensitivity status of an SCID paediatric patient being considered for bone marrow transplantation. We investigated the kinetics of repair of radiation-induced γ-H2AX foci in proliferating and confluent cultures of skin fibroblasts obtained from the patient, and from normal and radiosensitive (Artemis-deficient) controls. As well as the standard approach of averaging foci per cell over the entire population ("standard average"), we also examined foci per cell frequency distributions and calculated average foci per cell values in the major Poisson-distributed subpopulation ("principal average"). This approach allowed to avoid distortions such as that due to the S/G2 population in proliferating cells, with focus numbers approaching twice the normal, and to detect subpopulations of cells with defects in focus formation and repair. From the "standard average" analysis and co-localisation of γ-H2AX foci with 53BP1 we assigned the patient's repair status as close-to-normal. However, analysis of "principal average", foci per cell frequency distributions and survival curves challenged this initial conclusion. These studies indicate new dimensions of the γ-H2AX assay that, with further elaboration and exemplification, have the potential to augment its power to predict radiosensitivity.
    DNA repair 07/2013; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs; encoded by PRKDC) functions in DNA non-homologous end-joining (NHEJ), the major DNA double strand break (DSB) rejoining pathway. NHEJ also functions during lymphocyte development, joining V(D)J recombination intermediates during antigen receptor gene assembly. Here, we describe a patient with compound heterozygous mutations in PRKDC, low DNA-PKcs expression, barely detectable DNA-PK kinase activity, and impaired DSB repair. In a heterologous expression system, we found that one of the PRKDC mutations inactivated DNA-PKcs, while the other resulted in dramatically diminished but detectable residual function. The patient suffered SCID with reduced or absent T and B cells, as predicted from PRKDC-deficient animal models. Unexpectedly, the patient was also dysmorphic; showed severe growth failure, microcephaly, and seizures; and had profound, globally impaired neurological function. MRI scans revealed microcephaly-associated cortical and hippocampal dysplasia and progressive atrophy over 2 years of life. These neurological features were markedly more severe than those observed in patients with deficiencies in other NHEJ proteins. Although loss of DNA-PKcs in mice, dogs, and horses was previously shown not to impair neuronal development, our findings demonstrate a stringent requirement for DNA-PKcs during human neuronal development and suggest that high DNA-PK protein expression is required to sustain efficient pre- and postnatal neurogenesis.
    The Journal of clinical investigation 06/2013; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ataxia telangiectasia (ATM) mutated and Artemis, the proteins defective in ataxia telangiectasia and a class of Radiosensitive-Severe Combined Immunodeficiency (RS-SCID), respectively, function in the repair of DNA double strand breaks (DSBs), which arise in heterochromatic DNA (HC-DSBs) following exposure to ionizing radiation (IR). Here, we examine whether they have protective roles against oxidative damage induced and/or endogenously induced DSBs. We show that DSBs generated following acute exposure of G0/G1 cells to the oxidative damaging agent, tert-butyl hydroperoxide (TBH), are repaired with fast and slow components of similar magnitude to IR-induced DSBs and have a similar requirement for ATM and Artemis. Strikingly, DSBs accumulate in ATM(-/-) mouse embryo fibroblasts (MEFs) and in ATM or Artemis-defective human primary fibroblasts maintained for prolonged periods under confluence arrest. The accumulated DSBs localize to HC-DNA regions. Collectively, the results provide strong evidence that oxidatively induced DSBs arise in HC as well as euchromatic DNA and that Artemis and ATM function in their repair. Additionally, we show that Artemis functions downstream of ATM and is dispensable for HC-relaxation and for pKAP-1 foci formation. These findings are important for evaluating the impact of endogenously arising DNA DSBs in ATM and Artemis-deficient patients.
    Nucleic Acids Research 05/2011; 39(16):6986-97. · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Artemis is required for V(D)J recombination and the repair of a subset of radiation-induced DNA double strand breaks (DSBs). Artemis-null patients display radiosensitivity (RS) and severe combined immunodeficiency (SCID), classified as RS-SCID. Strongly impacting hypomorphic Artemis mutations confer marked infant immunodeficiency and a predisposition for EBV-associated lymphomas. Here, we provide evidence that a polymorphic Artemis variant (c.512C > G: p.171P > R), which has a world-wide prevalence of 15%, is functionally impacting. The c.512C > G mutation causes an approximately 3-fold decrease in Artemis endonuclease activity in vitro. Cells derived from a patient who expressed a single Artemis allele with the polymorphic mutational change, showed radiosensitivity and a DSB repair defect in G2 phase, with Artemis cDNA expression rescuing both phenotypes. The c.512C > G change has an additive impact on Artemis function when combined with a novel C-terminal truncating mutation (p.436C > X), which also partially inactivates Artemis activity. Collectively, our findings provide strong evidence that monoallelic expression of the c.512C > G variant impairs Artemis function causing significant radiosensitivity and a G2 phase DSB repair defect. The patient exhibiting monoallelic c.512C > G-Artemis expression showed immunodeficiency only in adulthood, developed bilateral carcinoma of the nipple and myelodysplasia raising the possibility that modestly decreased Artemis function can impact clinically.
    DNA repair 09/2010; 9(9):1003-10. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.
    Molecular Cancer Therapeutics 06/2010; 9(6):1775-87. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypomorphic mutations in DNA ligase IV (LIG4) cause a human syndrome of immunodeficiency, radiosensitivity, and growth retardation due to defective DNA repair by the nonhomologous end-joining (NHEJ) pathway. Lig4-null mice are embryonic lethal, and better mouse models are needed to study human LigIV syndrome. We recently identified a viable mouse strain with a Y288C hypomorphic mutation in the Lig4 gene. Lig4Y288C mice exhibit a greater than 10-fold reduction of LigIV activity in vivo and recapitulate the immunodeficiency and growth retardation seen in human patients. Here, we have demonstrated that the Lig4Y288C mutation leads to multiple defects in lymphocyte development and function, including impaired V(D)J recombination, peripheral lymphocyte survival and proliferation, and B cell class switch recombination. We also highlight a high incidence of thymic tumors in the Lig4Y288C mice, suggesting that wild-type LigIV protects against malignant transformation. These findings provide explanations for the complex lymphoid phenotype of human LigIV syndrome.
    The Journal of clinical investigation 06/2009; 119(6):1696-705. · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: XLF-Cernunnos (XLF) is a component of the DNA ligase IV-XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylated by pyrophosphate or following LX decharging during ligation. XLF enhances LX ligation activity in an ATP-independent and dependent manner. ATP-independent stimulation can be attributed to enhanced end-bridging. Whilst ATP alone fails to stimulate LX ligation activity, addition of XLF and ATP promotes ligation in a manner consistent with XLF-stimulated readenylation linked to ligation. We show that XLF is a weakly bound partner of the tightly associated LX complex and, unlike XRCC4, is dispensable for LX stability. 2BN cells, which have little, if any, residual XLF activity, show a 3-fold decreased ability to repair DNA double strand breaks covering a range of complexity. These findings strongly suggest that XLF is not essential for NHEJ but promotes LX adenylation and hence ligation. We propose a model in which XLF, by in situ recharging DNA ligase IV after the first ligation event, promotes double stranded ligation by a single LX complex.
    Nucleic Acids Research 01/2009; 37(2):482-92. · 8.81 Impact Factor
  • Clinical & Experimental Immunology 01/2008; 154:29-30. · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.
    DNA Repair 07/2007; 6(6):712-22. · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4(Y288C) mutation. The Lig4(Y288C) mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4(Y288C) strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.
    Nature 07/2007; 447(7145):686-90. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Null mutations in Artemis confer a condition described as RS-SCID, in which patients display radiosensitivity combined with severe combined immunodeficiency. Here, we characterize the defect in Artemis in a patient who displayed progressive combined immunodeficiency (CID) and elevated lymphocyte apoptosis. The patient is a compound heterozygote with novel mutations in both alleles, resulting in Artemis proteins with either L70 deletion or G126D substitution. Both mutational changes impact upon Artemis function and a fibroblast cell line derived from the patient (F96-224) has greatly reduced Artemis protein. In contrast to Artemis null cell lines, which fail to repair a subset of DNA double strand breaks (DSBs) induced by ionizing radiation, F96-224 cells show slow but residual DSB rejoining. Despite showing intermediate cellular and clinical features, F96-224 cells are as radiosensitive as Artemis null cell lines. We developed a FACS-based assay to examine cell division and cellular characteristics for 10 days following exposure to ionizing radiation (2 and 4 Gy). This analysis demonstrated that F96-224 cells show delayed cell death when compared with rapid growth arrest of an Artemis null cell line, and the emergence of a cycling population shown by a control line. F96-224 cells also display elevated chromosome aberrations when compared with control cells. F96-224 therefore represents a novel phenotype for a hypomorphic cell line. We suggest that delayed cell death contributes to the progressive CID phenotype of the Artemis patient.
    Human Molecular Genetics 05/2006; 15(8):1303-11. · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined telomere maintenance in cells of 11 primary fibroblast cell lines with differing genetic defects that confer sensitivity to ionizing radiation. These included cell lines derived from patients with ataxia telangiectasia, Nijmegen breakage syndrome, Fanconi anemia, defective Artemis, DNA ligase I and DNA ligase IV, an immunodeficient patient with a defect in DNA double-strand break repair, and a patient diagnosed with xeroderma pigmentosum who, in addition, showed severe clinical sensitivity to ionizing radiation. Our results, based on Southern blot, flow-FISH and Q-FISH (quantitative FISH) measurements, revealed an accelerated rate of telomere shortening in most cell lines derived from the above patients compared to cell lines from normal individuals or a cell line isolated from a heterozygotic parent of one radiosensitive patient. This accelerated telomere shortening was accompanied by the formation of chromatin bridges in anaphase cells, indicative of the early loss of telomere capping function and in some cases low levels of chromosome abnormalities in metaphase cells. We also analyzed telomere maintenance in mouse embryonic stem cells deficient in Brca1, another defect that confers radiosensitivity. Similarly, these cells showed accelerated telomere shortening and mild telomere dysfunction in comparison to control cells. Our results suggest that mechanisms that confer sensitivity to ionizing radiation may be linked with mechanisms that cause telomere dysfunction.
    Radiation Research 08/2005; 164(1):53-62. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.
    The EMBO Journal 02/2005; 24(1):199-208. · 9.82 Impact Factor

Publication Stats

571 Citations
136.85 Total Impact Points

Institutions

  • 2005–2014
    • University of Sussex
      • Centre for Genome Damage and Stability
      Brighton, England, United Kingdom
  • 2006
    • University College London
      • Institute of Child Health
      London, ENG, United Kingdom