Leo Peichl

Max Planck Institute for Brain Research, Frankfurt, Hesse, Germany

Are you Leo Peichl?

Claim your profile

Publications (93)366.4 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types and hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely four versus three. Most likely, in the bats' predominantly dark environment ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, where light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells. This article is protected by copyright. All rights reserved. Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company.
    The Journal of Comparative Neurology 12/2014; · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under 'white' light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation. © 2014. Published by The Company of Biologists Ltd.
    Journal of Experimental Biology 12/2014; 217(Pt 23):4221-4. · 3.00 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues.
    Epigenetics & Chromatin 01/2014; 7:17. · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diurnality, associated with enhanced visual acuity and color vision, is typical of most modern Primates. However, it remains a matter of debate when and how many times primates re-acquired diurnality or returned to nocturnality. We analyzed the features specific to nocturnal and diurnal vision that were recently found in the nuclei of mammalian rod photoreceptor cells in 11 species representing various groups of the Primates and related tree shrew and colugo. In particular, heterochromatin in rod nuclei of nocturnal mammals is clustered in the center of rod nuclei (inverted architecture), whereas rods of diurnal mammals retain rods with peripheral heterochromatin (conventional architecture). Rod nuclei of the nocturnal owl monkey have a state transitional to the inverted one. Surprisingly, rod nuclei of the tarsier have a conventional nuclear architecture typical for diurnal mammals, strongly implying that recent Tarsiiformes returned to nocturnality from the diurnal state. Diurnal lemurs retain inverted rod nuclei typical of nocturnal mammals, which conforms to the notion that the ancestors of all Lemuroidea were nocturnal. Data on the expression of proteins indispensable for peripheral heterochromatin maintenance (and, respectively, conventional or inverted nuclear organization) in rod cells support the view that the primate ancestors were nocturnal and transition to diurnality occurred independently in several primate and related groups: Tupaia, diurnal lemurs, and, at least partially independently, in Simiiformes (monkeys and apes) and Tarsiiformes.
    Evolutionary Biology 01/2014; · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2) and cone densities of 3000 - 6500/mm(2). Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2)). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.
    PLoS ONE 11/2013; 8(11):e80910. · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp(•)/FAD(•) radical pair formed during photoreduction is crucial for detecting magnetic directions.
    Journal of The Royal Society Interface 08/2013; 10(88):20130638. · 3.86 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • David M Hunt, Leo Peichl
    [Show abstract] [Hide abstract]
    ABSTRACT: S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
    Visual Neuroscience 07/2013; · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta—the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)—could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo (Galeopterus variegatus) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.
    Evolutionary Biology 04/2013; 40(4):542-553. · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development.
    Cell 01/2013; 152(3):584-98. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied the retinal rod pathway of Carollia perspicillata and Glossophaga soricina, frugivorous microbats of the phyllostomid family. Protein kinase Cα (PKCα) immunolabeling revealed abundant rod bipolar cells (RBCs) with axon terminals in the innermost sublamina of the inner plexiform layer (IPL), which is typical for mammals. Extraordinarily, the RBC axons showed additional synaptic contacts in a second sublamina further out in the IPL. Dye injections of PKCα-prelabeled RBCs of C. perspicillata confirmed the bistratified axon morphology. The functional partition of the IPL into ON and OFF sublayers was shown by using antibodies against vesicular glutamate transporter 1 [labeling all ON and OFF bipolar cell (BC) axon terminals] and G-protein γ13 (labeling all ON BCs). The ON sublayer occupied 75% of the IPL thickness, including both strata of the RBC axons. RBC output onto putative AII amacrine cells (ACs), the crucial interneurons of the rod pathway, was identified by calretinin, PKCα, and CtBP2 triple immunolabeling. Dye injections of calretinin-prelabeled ACs revealed tristratification of the AII ACs corresponding to the bistratified RBCs. Triple immunolabeling for PKCα, nitric oxide synthetase (NOS), and either GABA(C) or CtBP2 indicated GABAergic feedback onto RBCs via NOS-immunoreactive ACs. AII output analysis showed glycineric synapses with glycine receptor α1 expression between AII cells and OFF cone BCs and connexin 36-labeled gap junctions between AII cells and ON cone BCs. We conclude that microbats have a well developed rod pathway with great similarities to that of other mammals, but with an unusual IPL stratification pattern of RBCs and AIIs.
    Journal of Neuroscience 01/2013; 33(3):1014-23. · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a recent paper, we described the localization of cryptochrome 1a in the retina of domestic chickens, Gallus gallus, and European robins, Erithacus rubecula: Cryptochrome 1a was found exclusively along the membranes of the disks in the outer segments of the ultraviolet/violet single cones. Cryptochrome has been suggested to act as receptor molecule for the avian magnetic compass, which would mean that the UV/V cones have a double function: they mediate vision in the short-wavelength range and, at the same time, magnetic directional information. This has important implications and raises a number of questions, in particular, how the two types of input are separated. Here, we point out several possibilities how this could be achieved.
    Communicative & integrative biology 11/2011; 4(6):713-6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.
    PLoS ONE 05/2011; 6(5):e20091. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian retinas display an astonishing diversity in the spatial arrangement of their spectral cone photoreceptors, probably in adaptation to different visual environments. Opsin expression patterns like the dorsoventral gradients of short-wave-sensitive (S) and middle- to long-wave-sensitive (M) cone opsin found in many species are established early in development and thought to be stable thereafter throughout life. In mouse early development, thyroid hormone (TH), through its receptor TRβ2, is an important regulator of cone spectral identity. However, the role of TH in the maintenance of the mature cone photoreceptor pattern is unclear. We here show that TH also controls adult cone opsin expression. Methimazole-induced suppression of serum TH in adult mice and rats yielded no changes in cone numbers but reversibly altered cone patterns by activating the expression of S-cone opsin and repressing the expression of M-cone opsin. Furthermore, treatment of athyroid Pax8(-/-) mice with TH restored a wild-type pattern of cone opsin expression that reverted back to the mutant S-opsin-dominated pattern after termination of treatment. No evidence for cone death or the generation of new cones from retinal progenitors was found in retinas that shifted opsin expression patterns. Together, this suggests that opsin expression in terminally differentiated mammalian cones remains subject to control by TH, a finding that is in contradiction to previous work and challenges the current view that opsin identity in mature mammalian cones is fixed by permanent gene silencing.
    Journal of Neuroscience 03/2011; 31(13):4844-51. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies.
    PLoS ONE 10/2010; 5(10):e13403. · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally, vision was thought to be useless for animals living in dark underground habitats, but recent studies in a range of subterranean rodent species have shown a large diversity of eye features, from small subcutaneous eyes to normal-sized functional eyes. We analyzed the retinal photoreceptors in the subterranean hystricomorph rodents Ctenomys talarum and Ctenomys magellanicus to elucidate whether adaptation was to their near-lightless burrows or rather to their occasional diurnal surface activity. Both species had normally developed eyes. Overall photoreceptor densities were comparatively low (95,000-150,000/mm(2) in C. magellanicus, 110,000-200,000/mm(2) in C. talarum), and cone proportions were rather high (10-31% and 14-31%, respectively). The majority of cones expressed the middle-to-longwave-sensitive (L) opsin, and a 6-16% minority expressed the shortwave-sensitive (S) opsin. In both species the densities of L and S cones were higher in ventral than in dorsal retina. In both species the tuning-relevant amino acids of the S opsin indicate sensitivity in the near UV rather than the blue/violet range. Photopic spectral electroretinograms were recorded. Unexpectedly, their sensitivity profiles were best fitted by the linear summation of three visual pigment templates with lambda(max) at 370 nm (S pigment, UV), at 510 nm (L pigment), and at 450 nm (an as-yet unexplained mechanism). Avoiding predators and selecting food during the brief aboveground excursions may have exerted pressure to retain robust cone-based vision in Ctenomys. UV tuning of the S cone pigment is shared with a number of other hystricomorphs.
    The Journal of Comparative Neurology 10/2010; 518(19):4001-15. · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the retinal photoreceptors in the mouse opossum Thylamys elegans, a nocturnal South American marsupial. A variety of photoreceptor properties and color vision capabilities have been documented in Australian marsupials, and we were interested to establish what similarities and differences this American marsupial showed. Thylamys opsin gene sequencing revealed two cone opsins, a longwave-sensitive (LWS) opsin and a shortwave-sensitive (SWS1) opsin with deduced peak sensitivities at 560 nm and 360 nm (ultraviolet), respectively. Immunocytochemistry located these opsins to separate cone populations, a majority of LWS cones (density range 1,600-5,600/mm(2)) and a minority of SWS1 cones (density range 100-690/mm(2)). With rod densities of 440,000-590,000/mm(2), the cones constituted 0.4-1.2% of the photoreceptors. This is a suitable adaptation to nocturnal vision. Cone densities peaked in a horizontally elongated region ventral to the optic nerve head. In ventral-but not dorsal-retina, roughly 40% of the LWS opsin-expressing cones occurred as close pairs (double cones), and one member of each double cone contained a colorless oil droplet. The corneal electroretinogram (ERG) showed a high scotopic sensitivity with a rod peak sensitivity at 505 nm. At mesopic light levels, the spectral ERG revealed the contributions of a UV-sensitive SWS1 cone mechanism and an LWS cone mechanism with peak sensitivities at 365 nm and 555 nm, respectively, confirming the tuning predictions from the cone opsin sequences. The two spectral cone types provide the basis for dichromatic color vision, or trichromacy if the rods contribute to color processing at mesopic light levels.
    The Journal of Comparative Neurology 12/2009; 518(9):1589-602. · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of postnatal hypothyroidism on retinal development and spatial patterning of cone opsin expression were studied in Pax8-deficient mice. Pax8(-/-) mice are incapable of synthesizing thyroxine and serve as a model for congenital hypothyroidism. Pax8(-/-), Pax8(+/-), and Pax8(+/+) littermates were studied. Serum thyroid hormone levels, body weight, and eye size were measured. Retinal cell-type-specific antibodies were used on frozen sections to examine the postnatal development of the major retinal cell classes and of retinal structure. The expression of short-wavelength-sensitive (S) and middle-to-long-wavelength-sensitive (M) cone opsins was assessed with opsin antibodies on retinal sections and whole retinas. The pattern of S opsin mRNA was assessed by in situ hybridization. In Pax8(-/-) mice, S opsin was upregulated in all cones, whereas M opsin was downregulated throughout the retina, the wild-type dorsoventral gradients of S and M opsin expression were absent. Otherwise, Pax8(-/-) mice showed no overt mutant phenotype in eye size, gross retinal anatomy, and the time-course of structural differentiation of retinal photoreceptors, horizontal cells, bipolars, amacrines, ganglion cells, and Müller glia cells. Pax8(-/-) mice show a pattern of cone opsin expression that differs substantially from the wild-type pattern, but exhibit no apparent alterations in general retinal development. The finding that a postnatal decrease in serum thyroid hormone yields changes in postnatal cone opsin expression is consistent with a ligand-dependent role of thyroid hormone receptor beta2 in S opsin repression and M opsin activation.
    Investigative ophthalmology & visual science 10/2009; 51(3):1719-27. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinal topography in juvenile harbor seals (Phoca vitulina) was analyzed in retinal wholemounts stained with cresyl violet. A region of highest ganglion cell density, i.e., an area centralis, was identified in the temporal retina at a mean distance of 7.7 mm from the papilla (mean peak ganglion cell density 3,952 cells/mm(2)). With an estimated posterior nodal distance of 21 mm, this value corresponds to 531 cells/deg(2). Retinal resolution was calculated as 11.5 cycles/deg under water and 8.7 cycles/deg in air, which is better than the corresponding behaviorally assessed visual acuities. In the region of high ganglion cell density, the ganglion cell layer comprised 1-2 cell layers. From there a moderate visual streak with a ganglion cell density of approximately 1,000 cells/mm(2) extended into the nasal retina. The latter two features together with the absolute ganglion cell density render the harbor seal retina more similar to that of terrestrial carnivores than to that of other pinnipeds.
    Brain Behavior and Evolution 09/2009; 74(2):102-9. · 2.89 Impact Factor

Publication Stats

4k Citations
366.40 Total Impact Points

Institutions

  • 1986–2014
    • Max Planck Institute for Brain Research
      Frankfurt, Hesse, Germany
  • 2013
    • Goethe-Universität Frankfurt am Main
      • Institute of Neurology - Edinger Institute
      Frankfurt am Main, Hesse, Germany
    • University of Western Australia
      • School of Animal Biology
      Perth, Western Australia, Australia
  • 2009–2013
    • Ludwig-Maximilian-University of Munich
      • • Department of Biology II
      • • Division of Anthropology and Human Genetics
      München, Bavaria, Germany
    • Universidad de Valparaíso (Chile)
      • Faculty of Science
      Ciudad de Valparaíso, Valparaíso, Chile
  • 1998
    • University of Benin
      Benim, Edo, Nigeria
  • 1988
    • University of California, Los Angeles
      • Department of Medicine
      Los Angeles, CA, United States
  • 1985
    • University Hospital Frankfurt
      Frankfurt, Hesse, Germany
  • 1978
    • Universität Konstanz
      Constance, Baden-Württemberg, Germany