Li Zhang

University of Minnesota Duluth, Duluth, Minnesota, United States

Are you Li Zhang?

Claim your profile

Publications (4)11.53 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed kinetic studies of the reactions of haloacetic acids (HAAs) with Fe(0) were performed in longitudinally mixed batch reactors. The reactions of tribromoacetic acid (TBAA), bromodichloroacetic acid, and chlorodibromoacetic acid were mass transfer limited, with corrected mass transfer coefficients of 3.7-3.9 x 10(-4) m/s. The reactions of trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), chloroacetic acid (CAA), and bromoacetic acid (BAA) were reaction limited. Bromochloroacetic acid (BCAA) and dibromoacetic acid (DBAA) were partially reaction limited. For the reaction limited species and partially reaction limited species, intra- and interspecies competition effects were observed. A Langmuir-Hinshelwood-Hougen-Watson kinetic model incorporating a mass transfer term was adopted to account for these effects. The lumped kinetic parameters for the HAAs ranged from 0.04 to 248 microM min(-1) for an iron loading of 0.3 g of Fe/125 mL and followed the trend DBAA > BCAA > TCAA > BAA > DCAA. The adsorption parameters ranged from 0.0007 to 0.0065 microM(-1). The effect of dissolved oxygen (DO) on the reaction of TBAA or BAA with Fe(0) was also investigated. No significant effect of DO on the reaction rate of TBAA, which is a mass transfer limited species, was observed. A lag phase, however, was observed for the reaction of BAA, which is a reaction limited species, until the DO was depleted. Simulations were performed to investigate the potential significance of the reactions of HAAs with Fe(0) in water distribution systems.
    Environmental Science and Technology 01/2005; 38(24):6881-9. DOI:10.1021/es049267e · 5.33 Impact Factor

  • Water Environment Research 10/2001; 73(6):2-82. DOI:10.2175/106143001X143475 · 0.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To predict the fate of haloacetic acids (HAAs) in natural or engineered systems, information is needed concerning the types of reactions that these compounds undergo, the rates of those reactions, and the products that are formed. Given that many drinking water distribution systems consist of unlined cast iron pipe, reactions of HAAs with elemental iron (Fe0) may play a role in determining the fate of HAAs in these systems. In addition, zerovalent iron may prove to be an effective treatment technology for the removal of HAAs from chlorinated drinking water and wastewater. Thus, batch experiments were used to investigate reactions of four trihaloacetic acids, trichloroacetic acid (TCAA), tribromoacetic acid (TBAA), chlorodibromoacetic acid (CDBAA), and bromodichloroacetic acid (BDCAA), with Fe0. All compounds readily reacted with Fe0, and investigation of product formation and subsequent disappearance revealed that the reactions proceeded via sequential hydrogenolysis. Bromine was preferentially removed over chlorine, and TBAA was the only compound completely dehalogenated to acetic acid. In compounds containing chlorine, the final product of reactions with Fe0 was monochloroacetic acid. Halogen mass balances were 95-112%, and carbon mass balances were 62.6-112%. The pseudo-first-order rate constants for trihaloacetic acid degradation were as follows: BDCAA (10.6 +/- 3.1 h-1) > CDBAA (1.43 +/- 0.32 h-1) approximately TBAA (1.41 +/- 0.28 h-1) > TCAA (0.08 +/- 0.02 h-1).
    Environmental Science and Technology 06/2001; 35(11):2258-63. DOI:10.1021/es001785b · 5.33 Impact Factor