Ke Yang

Chongqing University, Ch’ung-ch’ing-shih, Chongqing Shi, China

Are you Ke Yang?

Claim your profile

Publications (26)75.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.
    PLoS ONE 01/2014; 9(4):e94397. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The canonical Wnt/β-catenin pathway plays an important role in hair cycle induction. Wnt5a is a non-canonical Wnt family member that generally antagonizes canonical Wnt signaling in other systems. In hair follicles, Wnt5a and canonical Wnt are both expressed in cells in the telogen stage. Wnt5a has been shown to be critical for controlling hair cell fate. However, the role that Wnt5a plays in the transition from the telogen to anagen stage is unknown. In this study, using whole-mount in situ hybridization, we show that Wnt5a is produced by several other cell types, excluding dermal papilla cells, throughout the hair cycle. For example, Wnt5a is expressed in bulge and secondary hair germ cells in the telogen stage. Our studies focused on the depilated 8-week-old mouse as a synchronized model of hair growth. Interestingly, overexpression of adenovirus Wnt5a in the dorsal skin of mice led to the elongation of the telogen stage and inhibition of the initiation of the anagen stage. However, following an extended period of time, four pelage hair types grew from hairless skin that was induced by Wnt5a, and the structure of these new hair shafts was normal. Using microarray analysis and quantitative arrays, we showed that the expression of β-catenin and some target genes of canonical Wnt signaling decreased after Wnt5a treatment. These data demonstrate that Wnt5a may inhibit the telogen stage to maintain a quiescent state of the hair follicle.
    International journal of medical sciences 01/2013; 10(7):908-14. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has revealed that Wnt10b activates canonical Wnt signaling, which is integral to melanocyte differentiation in hair follicles (HFs). However, the function of Wnt10b in HF melanocytes remains poorly understood. We determined using Dct-LacZ transgenic mice that Wnt10b is mainly expressed near and within melanocytes of the hair bulbs during the anagen stage of the hair cycle. We also found that Wnt10b promotes an increase in melanocyte maturation and pigmentation in the hair bulbs of the mouse HF. To further explore the potential functions of Wnt10b in mouse HF melanocytes, we infected iMC23 cells with Ad-Wnt10b to overexpress Wnt10b. We demonstrated that Wnt10b promotes the differentiation of melanocytes by activating canonical Wnt signaling in melanocytes.
    International journal of medical sciences 01/2013; 10(6):691-8. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt5a, which is a noncanonical Wnt molecule, has been shown to be involved in a variety of developmental processes and cellular functions. In this study, we used "melan-a" cells as a cell model to investigate the effects of Wnt5a on melanocyte proliferation and melanogenesis, and to elucidate the possible mechanisms involved. We infected melan-a cells with recombinant Wnt5a adenoviruses to express Wnt5a protein and to simulate the Wnt5a processing environment. MTT assay and BrdU incorporation assay revealed that Wnt5a significantly inhibited the proliferation of melan-a cells. Melanin content and tyrosinase activity assays showed that Wnt5a was an inhibitor of melanin synthesis. Furthermore, RT-PCR and Western blot showed that this suppressive effect depended on noncanonical Wnt/Ror2 pathway activation and accessed the inhibition of the canonical Wnt pathway. The above results provided a novel insight into the role of Wnt5a and its related signaling in melanocyte homeostasis.
    International journal of medical sciences 01/2013; 10(6):699-706. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To demonstrate ultrasound contrast agents to be important potentiators of high-intensity focused ultrasound (HIFU), we prospectively assessed the effectiveness of HIFU combined with nanoscale ultrasound contrast agents for the treatment of breast VX2 tumors in rabbits. We found that the change of grayscale value in the target area in the HIFU+nanobubble group was significantly higher than that in the HIFU+phosphate-buffered saline (PBS) group after irradiation (P<.01). The size of coagulation necrosis was also significantly larger in the HIFU+nanobubble group when compared to that in the HIFU+PBS group (P<.001). In conclusion, our study suggested that adding nanoscale ultrasound contrast agents may improve the treatment efficacy of HIFU for breast VX2 tumors in rabbits.
    Clinical imaging 11/2012; 36(6):717-23. · 0.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To construct the prokaryotic expression plasmid pEGX-6P-1-SAK-HC, express it in E.coli, and identify its biological activity. The fusion gene (SAK-HC) was obtained by overlap-extension PCR and then inserted into prokaryotic soluble pEGX-6P-1 vector with GST tag to construct expression plasmid (pEGX-6P-1-SAK-HC). GST-SAK-HC was expressed by E.coli B834 (DE3) under the induction of IPTG and purified by Glutathion-Sepharose 4B (GST) affinity chromatography and negative-ion exchange column (DEAE) chromatography. PreScission protease was used to remove the GST tag. The purity of the fusion protein was analyzed by SDS-PAGE and the fibrinolytic activity of SAK-HC in vitro was characterized by soluble fibrin plate method. PCR, sequencing and restriction enzyme digestion analysis demonstrated that the recombinant plasmid was constructed successfully. The fusion protein was expressed in E.coli B834 (DE3), M(r); being 36 000 as shown by SDS-PAGE. After purified by GST affinity and DEAE chromatography, SAK-HC fusion protein of high purity was obtained from the cell supernantants. In vitro experiments showed that the fibrinolytic activity of the recombinant SAK-HC was about 9.4×10();4 IU/mg. The SAK-HC fusion protein we obtained was successfully expressed in E.coli and exhibited a fibrinolytic activity as high as the urokinase standard, which offers a base for the identification of immunogenicity of the fusion protein.
    Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 11/2012; 28(11):1208-11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hair follicles periodically undergo regeneration. The balance between activators and inhibitors may determine the time required for telogen hair follicles to reenter anagen. We previously reported that Wnt10b (wingless-type mouse mammary tumor virus integration site family member 10b) could promote the growth of hair follicles in vitro. To unveil the roles of Wnt10b in hair follicle regeneration, we established an in vivo mouse model using intradermal injection. On the basis of this model, we found that Wnt10b could induce the biological switch of hair follicles from telogen to anagen when overexpressed in the skin. The induced hair follicles expressed structure markers and could cycle normally into catagen. Conversely, anagen onset was abrogated by the knockdown of Wnt10b with small interfering RNA (siRNA). The Wnt10b aberrant expression data suggest that it is one of the activators of hair follicle regeneration. The β-catenin protein is translocated to the nucleus in Wnt10b-induced hair follicles. The biological effects of Wnt10b were abrogated when β-catenin expression was downregulated with siRNA. These data revealed that Wnt10b might induce hair follicle regeneration in vivo via the enhanced activation of the canonical Wnt signaling pathway. To our knowledge, our data provide previously unreported insights into the regulation of hair follicle cycling and provide potential therapeutic targets for hair follicle-related diseases.Journal of Investigative Dermatology advance online publication, 26 July 2012; doi:10.1038/jid.2012.235.
    Journal of Investigative Dermatology 07/2012; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocytes are pigment-producing cells responsible for coloration of skin and hair. Although the importance of Wnt3a in melanocyte development has been well recognized, the role of Wnt3a in mature melanocytes has not been elucidated. This study was conducted to further explore the effects of Wnt3a on melanocyte proliferation and melanogenesis, and to elucidate the possible mechanisms involved. We infected melan-a cells with AdWnt3a to serve as the production source of the Wnt3a protein. MTT assay, 5-bromodeoxyuridine incorporation assay and flow cytometric analysis showed that Wnt3a inhibited the proliferation of melan-a cells and this was associated with decrease of cells in the S phase and increase of cells in the G(1) phase. Melanin content and tyrosinase activity assay revealed that Wnt3a significantly promoted melanogenesis of melan-a cells. Furthermore, western blot analysis showed that Wnt3a upregulated the expression of microphthalmia-associated transcription factor and its downstream target genes, tyrosinase and tyrosinase-related protein 1 in melan-a cells. Collectively, our results suggest that Wnt3a plays an important role in melanocyte homeostasis.
    International Journal of Molecular Medicine 06/2012; 30(3):636-42. · 1.96 Impact Factor
  • Journal of Investigative Dermatology 05/2012; 132(10):2479-83. · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth hormone (GH) is usually released by somatotrophs in the anterior pituitary in response to the GH-releasing hormone and plays an important role in skeleton development and postnatal growth. However, it is unclear if extrapituitary GH exerts any effect on murine multilineage cells (MMCs). MMCs are multipotent progenitors that give rise to several lineages, including bone, cartilage, and fat. We have identified bone morphogenic protein 9 (BMP9) as one of the most osteogenic BMPs in MMCs by regulating a distinct set of downstream mediators. In this study, we find that GH is one of the most significantly upregulated genes by BMP9 in mouse MMCs through expression-profiling analysis. We confirm that GH is a direct early target of and upregulated by BMP9 signaling. Exogenous GH synergizes with BMP9 on inducing early and late osteogenic markers in MMCs. Furthermore, BMP9 and GH costimulation leads to a significant expansion of growth plate in cultured limb explants. Although GH alone does not induce de novo bone formation in an ectopic bone formation model, BMP9 and GH costimulated MMCs form more mature bone, which can be inhibited by silencing GH expression. The synergistic osteogenic activity between BMP9 and GH can be significantly blunted by JAK/STAT inhibitors, leading to a decrease in GH-regulated insulin-like growth factor 1 (IGF1) expression in MMCs. Our results strongly suggest that BMP9 may effectively regulate extrapituitary GH expression in MMCs. Thus, it is conceivable that the BMP9-GH-IGF axis may be exploited as an innovative strategy to enhance osteogenesis in regenerative medicine.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 03/2012; 27(7):1566-75. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the importance of Wnt3a in melanocyte development has been well recognized, the effect of Wnt3a in normal HF melanocytes has not been clearly elucidated yet. Thus, we sought to examine the presence and location of Wnt3a in HF during hair cycle. By using melanocyte-targeted Dct-LacZ transgenic mice, we found that Wnt3a signaling is activated in mouse HF melanocytes during anagen of hair cycle. To further explore the potential functions of Wnt3a in mouse melanocytes, we infected melan-a cells with AdWnt3a to serve as the production source of Wnt3a protein. We demonstrated that Wnt3a promoted melanogenesis through upregulation of MITF and its downstream genes, tyrosinase and TRP1, in melanocytes. In vivo, AdWnt3a rescued the effects of AdsimMITF on HF melanocytes and promoted melanin synthesis. Our results suggest that Wnt3a plays an important role in mouse HF melanocytes homeostasis.
    Biochemical and Biophysical Research Communications 03/2012; 420(4):799-804. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications.
    PLoS ONE 01/2012; 7(2):e32428. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that the Wnt signaling pathway plays an important role in the growth and development of hair follicles. It has been generally accepted that Wnt5a, a non-canonical Wnt gene, inhibits the Wnt/β-catenin signaling pathway. Several reports have addressed its mRNA expression in embryonic and postnatal hair follicles, but its exact role in the growth of hair follicles is currently unknown. In this study, we investigated the immunolocalization of Wnt5a protein in pelages of the dorsal skin and whisker follicles of mice. We found that in the anagen phase, dermal papilla cells showed the highest staining levels of Wnt5a protein, while in the catagen and the telogen phases the staining levels were lower. During the growth stage, Wnt5a protein was prominently located in the matrix and precortex cells in addition to the inner root sheath, outer root sheath and the dermal papilla. As the hair cycle progresses, the immunostaining of Wnt5a was gradually decreased in the catagen phase and was located in the bulge and secondary hair germ in the telogen phase. This Wnt5a immunostaining profile was consistent between dorsal skin pelages and whisker follicles. Furthermore, in an in vitro study using whisker follicle organ culture, we demonstrated that the growth of the hair shaft was significantly inhibited by adenovirus Wnt5a. Our findings suggest that Wnt5a is a dynamic factor in the hair cycle and it is important for the regulation of hair shaft growth.
    Acta histochemica 10/2011; 113(6):608-12. · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein post-translational modifications (PTMs) at the lysine residue, such as lysine methylation, acetylation, and ubiquitination, are diverse, abundant, and dynamic. They play a key role in the regulation of diverse cellular physiology. Here we report discovery of a new type of lysine PTM, lysine malonylation (Kmal). Kmal was initially detected by mass spectrometry and protein sequence-database searching. The modification was comprehensively validated by Western blot, tandem MS, and high-performance liquid chromatography of synthetic peptides, isotopic labeling, and identification of multiple Kmal substrate proteins. Kmal is a dynamic and evolutionarily conserved PTM observed in mammalian cells and bacterial cells. In addition, we demonstrate that Sirt5, a member of the class III lysine deacetylases, can catalyze lysine demalonylation and lysine desuccinylation reactions both in vitro and in vivo. This result suggests the possibility of nondeacetylation activity of other class III lysine deacetylases, especially those without obvious acetylation protein substrates. Our results therefore reveal a new type of PTM pathway and identify the first enzyme that can regulate lysine malonylation and lysine succinylation status.
    Molecular &amp Cellular Proteomics 09/2011; 10(12):M111.012658. · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Promoting osteogenic differentiation and efficacious bone regeneration have the potential to revolutionize the treatment of orthopaedic and musculoskeletal disorders. Mesenchymal Stem Cells (MSCs) are bone marrow progenitor cells that have the capacity to differentiate along osteogenic, chondrogenic, myogenic, and adipogenic lineages. Differentiation along these lineages is a tightly controlled process that is in part regulated by the Bone Morphogenetic Proteins (BMPs). BMPs 2 and 7 have been approved for clinical use because their osteoinductive properties act as an adjunctive treatment to surgeries where bone healing is compromised. BMP-9 is one of the least studied BMPs, and recent in vitro and in vivo studies have identified BMP-9 as a potent inducer of osteogenic differentiation in MSCs. BMP-9 exhibits significant molecular cross-talk with the Wnt/ β-catenin and other signaling pathways, and adenoviral expression of BMP-9 in MSCs increases the expression of osteogenic markers and induces trabecular bone and osteiod matrix formation. Furthermore, BMP-9 has been shown to act synergistically in bone formation with other signaling pathways, including Wnt/ β-catenin, IGF, and retinoid signaling pathways. These results suggest that BMP-9 should be explored as an effective bone regeneration agent, especially in combination with adjuvant therapies, for clinical applications such as large segmental bony defects, non-union fractures, and/or spinal fusions.
    Current Gene Therapy 04/2011; 11(3):229-40. · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma (OS) is associated with poor prognosis due to its high incidence of metastasis and chemoresistance. It often arises in areas of rapid bone growth in long bones during the adolescent growth spurt. Although certain genetic conditions and alterations increase the risk of developing OS, the molecular pathogenesis is poorly understood. Recently, defects in differentiation have been linked to cancers, as they are associated with high cell proliferation. Treatments overcoming these defects enable terminal differentiation and subsequent tumor inhibition. OS development may be associated with defects in osteogenic differentiation. While early regulators of osteogenesis are unable to bypass these defects, late osteogenic regulators, including Runx2 and Osterix, are able to overcome some of the defects and inhibit tumor propagation through promoting osteogenic differentiation. Further understanding of the relationship between defects in osteogenic differentiation and tumor development holds tremendous potential in treating OS.
    Sarcoma 01/2011; 2011:325238.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.
    Stem cells international. 01/2011; 2011:201371.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt pathway plays a critical role in development and differentiation of many tissues, such as the gut, hair follicles, and bone. Increasing evidence indicates that Wnts may function as key regulators in osteogenic differentiation of mesenchymal stem cells and bone formation. Conversely, aberrant Wnt signaling is associated with many osteogenic pathologies. For example, genetic alterations in the Wnt signaling pathway lead to osteoporosis and osteopenia, while inactivating mutations of Wnt inhibitors result in a hyperostotic skeleton with increased bone mineral density. Hyperparathyroidism causes osteopenia via induction of the Wnt signaling pathway. Lithium, often used to treat bipolar disorder, blocks a Wnt antagonist, decreasing the patient's risk of fractures. Thus, manipulating the Wnt pathway may offer plenty therapeutic opportunities in treating bone disorders. In fact, induction of the Wnt signaling pathway or inhibition of Wnt antagonists has shown promise in treating bone metabolic disorders, including osteoporosis. For example, antibodies targeting the Wnt inhibitor Sclerostin lead to increased bone mineral density in post-menopausal women. However, such therapies targeting the Wnt pathway are not without risk, as genetic alternations may lead to over-activation of Wnt/β-catenin and its association with many tumors. It is conceivable that targeting Wnt inhibitors may predispose the individuals to tumorigenic phenotypes, at least in bone. Here, we review the roles of Wnt signaling in bone metabolic and pathologic processes, as well as the therapeutic potential for targeting Wnt pathway and its associated risks in bone diseases.
    Current Molecular Pharmacology 01/2011; 4(1):14-25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As one of the most common malignancies, colon cancer is initiated by abnormal activation of the Wnt/β-catenin pathway. Although the treatment options have increased for some patients, overall progress has been modest. Thus, there is a great need to develop new treatments. We have found that bisbenzylisoquinoline alkaloid tetrandrine (TET) exhibits anticancer activity. TET is used as a calcium channel blocker to treat hypertensive and arrhythmic conditions in Chinese medicine. Here, we investigate the molecular basis underlying TET's anticancer activity. We compare TET with six chemotherapy drugs in eight cancer lines and find that TET exhibits comparable anticancer activities with camptothecin, vincristine, paclitaxel, and doxorubicin, and better than that of 5-fluorouracil (5-FU) and carboplatin. TET IC₅₀ is ≤5 μM in most of the tested cancer lines. TET exhibits synergistic anticancer activity with 5-FU and reduces migration and invasion capabilities of HCT116 cells. Furthermore, TET induces apoptosis and inhibits xenograft tumor growth of colon cancer. TET treatment leads to a decrease in β-catenin protein level in xenograft tumors, which is confirmed by T-cell factor/lymphocyte enhancer factor and c-Myc reporter assays. It is noteworthy that HCT116 cells with allelic oncogenic β-catenin deleted are less sensitive to TET-mediated inhibition of proliferation, viability, and xenograft tumor growth. Thus, our findings strongly suggest that the anticancer effect of TET in colon cancer may be at least in part mediated by targeting β-catenin activity. Therefore, TET may be used alone or in combination as an effective anticancer agent.
    Molecular pharmacology 10/2010; 79(2):211-9. · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) are bone marrow stromal cells that can differentiate into multiple lineages. We previously demonstrated that BMP9 is one of the most potent BMPs to induce osteogenic differentiation of MSCs. BMP9 is one of the least studied BMPs. Whereas ALK1, ALK5, and/or endoglin have recently been reported as potential BMP9 type I receptors in endothelial cells, little is known about type I receptor involvement in BMP9-induced osteogenic differentiation in MSCs. Here, we conduct a comprehensive analysis of the functional role of seven type I receptors in BMP9-induced osteogenic signaling in MSCs. We have found that most of the seven type I receptors are expressed in MSCs. However, using dominant-negative mutants for the seven type I receptors, we demonstrate that only ALK1 and ALK2 mutants effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic ossification in MSC implantation assays. Protein fragment complementation assays demonstrate that ALK1 and ALK2 directly interact with BMP9. Likewise, RNAi silencing of ALK1 and ALK2 expression inhibits BMP9-induced BMPR-Smad activity and osteogenic differentiation in MSCs both in vitro and in vivo. Therefore, our results strongly suggest that ALK1 and ALK2 may play an important role in mediating BMP9-induced osteogenic differentiation. These findings should further aid us in understanding the molecular mechanism through which BMP9 regulates osteogenic differentiation of MSCs.
    Journal of Biological Chemistry 09/2010; 285(38):29588-98. · 4.65 Impact Factor

Publication Stats

304 Citations
75.89 Total Impact Points

Institutions

  • 2012–2013
    • Chongqing University
      • School of Bioengineering
      Ch’ung-ch’ing-shih, Chongqing Shi, China
  • 2007–2012
    • Third Military Medical University
      Ch’ung-ch’ing-shih, Chongqing Shi, China
  • 2010–2011
    • The University of Chicago Medical Center
      • Department of Surgery
      Chicago, IL, United States
    • Chongqing Medical University
      Ch’ung-ch’ing-shih, Chongqing Shi, China