Keiko Yamamoto

Fujita Health University, Nagoya, Aichi, Japan

Are you Keiko Yamamoto?

Claim your profile

Publications (8)13.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between CD40 and its ligand (CD40L) have important roles in T-cell-dependent activation of B cells, which may be related to the thyrotoxic activity of Graves' disease (GD). Soluble forms of CD40 ligand (sCD40L) are released from activated T cells and platelets, and several types of inflammatory cytokines are increased in patients with hyperthyroid GD. The aim of this study was to assess sCD40L and other cytokines as clinical indicators of disease activity or as possible markers of remission in GD. Serum levels of sCD40L, interleukin 18 (IL-18), tumor necrosis factor-alpha (TNFα), and TNFα receptors 1 and 2 (TNFR1 and TNFR2) were investigated in patients with active GD (GD-A), intractable GD (GD-IT), inactive GD (GD-IA), GD in remission (GD-R), and Hashimoto's thyroiditis (HT), and in control subjects (CON). Serum concentrations of sCD40L were higher in the GD-A and GD-IT groups than in the HT and CON groups. Similarly, serum concentrations of IL-18, which induces Th1 cytokines, such as interferon-γ, were higher in the GD-A and GD-IT groups than in all other groups. Serum levels of TNFR1 and TNFR2 were also significantly higher in the GD-A than in all other groups. The mean serum concentration of TNFα was higher in the GD-R compared with the GD-A and GD-IT groups, although the difference was not significant. Serum sCD40L concentrations in the GD-R group were lower than in the GD-A and GD-IT groups. Finally, the ratio of serum TNFα to sCD40L was higher in the GD-R group than in the GD-A and GD-IT groups. This is the first report that serum sCD40L is increased in active GD, and that the serum TNFα:sCD40L ratio is a marker for remission in GD. Our results suggest that not only thyrotoxicosis, but also the activity of the immunoreaction presenting as anti-thyrotropin receptor antibodies (TRAb) titer in GD, affects inflammatory cytokine serum profiles. Serum profiles of cytokines vary in patients with GD depending on disease activity. An elevated serum TNFα:sCD40L ratio indicates declining disease activity and reflects a shift from Th2 to Th1 dominance, suggesting that suppression of sCD40L or increased production of TNFα is required to initiate or maintain remission of GD.
    Thyroid: official journal of the American Thyroid Association 04/2012; 22(5):516-21. · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Interactions between CD40 and its ligand (CD40L) have important roles in T cell-dependent activation of B cells, which may be related to the thyrotoxic activity of Graves' disease (GD). Soluble forms of CD40L (sCD40L) are released from activated T cells and platelets, and several types of inflammatory cytokines are increased in patients with hyperthyroid GD. The aim of this study was to assess sCD40L and other cytokines as clinical indicators of disease activity or as possible markers of remission in GD. Methods: Serum levels of sCD40L, interleukin 18 (IL-18), TNFR1, TNFR2 and TNF were investigated in patients with active GD (GD-A), intractable GD (GD-IT), inactive GD (GD-IA), and patients with GD in remission (GD-R), Hashimoto's thyroiditis (HT), and control subjects (CON). Results: Serum concentrations of sCD40L were higher in the GD-A and GD-IT groups than in the HT and CON groups. Similarly, serum concentrations of IL-18, which induces Th1 cytokines such as interferon-γ, were higher in the GD-A and GD-IT groups than in all other groups. Serum levels of TNFR1 and TNFR2 were also significantly higher in the GD-A than in all other groups. The mean serum concentration of TNFwas higher in the GD-R compared to the GD-A and GD-IT groups, although the difference was not significant. Serum sCD40L concentrations in the GD-R group were lower than in the GD-A and GD-IT groups. Finally, the ratio of serum TNF to sCD40L was higher in the GD-R group than in the GD-A and GD-IT groups. This is the first report that serum sCD40L is increased in active GD, and that the serum TNFsCD40L ratio is a marker for remission in GD. Conclusions: Our results suggest that not only thyrotoxicosis, but also the activity of the immunoreaction presenting as TRAb titer in GD, affects inflammatory cytokine serum profiles. Serum profiles of cytokines vary in patients with GD depending on disease activity. An elevated serum TNF:sCD40L ratio indicates declining disease activity and reflects a shift from Th2 to Th1 dominance, suggesting that suppression of sCD40L or increased production of TNF is required to initiate or maintain remission of GD.
    Thyroid: official journal of the American Thyroid Association 03/2012; · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the causes of diabetic vascular complications has become an increasingly important issue because of the rapidly rising prevalence of diabetes. Recently discovered vasoconstrictors and angiogenesis regulators, such as endothelin (ET) and vascular endothelial growth factor (VEGF), have been intensely studied for possible pathogenic roles in diabetic vascular complications. The present study was undertaken to clarify the effect of glycemic control on serum VEGF and plasma ET-1 concentrations in diabetic patients, and to identify other factors that may cause fluctuations of these substances. Plasma VEGF and ET-1 concentrations of 45 hospitalized diabetic patients and 54 control subjects were measured by enzyme immunoassay (EIA) and radioimmunoassay (RIA), respectively. Plasma VEGF was elevated in poorly controlled diabetic patients compared with healthy subjects and plasma VEGF concentrations declined after hospitalized treatment with either insulin or oral hypoglycemic agents in combination with diet. There was a significant correlation between plasma VEGF concentration and both fasting plasma glucose (FPG) and hemoglobin A(1c) (HbA(1c)). Plasma ET-1 in poorly controlled diabetic patients was higher than in healthy controls, but improved glycemic control did not affect plasma ET-1 concentrations. Thus, poor glycemic control causes increased levels of plasma VEGF, which may result in hypertension and vascular complications in diabetes. Short-term treatment resulting in good glycemic control can improve levels of VEGF and may provide beneficial effects on diabetic vascular complications.
    Metabolism 06/2004; 53(5):550-5. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In view of the fact that a deficient calcium (Ca) intake results in osteoporosis in elderly males, we conducted an animal experiment on aged male Wistar rats given a Ca-deficient diet. The rats were divided into 2 groups according to diet: a Ca-deficient diet group (Ca content, 0.08% to 0.1%) and a regular diet group (Ca content, 0.8% to 1.2%). The Ca-deficient diet reduced bone mineral density (BMD) by approximately 12%. Administration of menatetrenone or elcatonin was able to reverse the reduction in BMD induced by Ca deficiency. The mean estradiol level in sera of rats fed the Ca-deficient diet was significantly increased to 4.3 times that in the regular diet group. However, the increased estradiol concentration was reduced after the administration of menatetrenone or elcatonin. The estrone concentrations in sera of menatetrenone- or elcatonin-treated rats fed the Ca-deficient diet decreased to a level lower than that of animals fed the regular diet. Testicular aromatase cytochrome P450 (P450(arom); estrogen synthetase) activity was significantly increased by 2.4-fold in the Ca-deficient diet group compared to that in the regular diet group, and the aromatase mRNA level was also significantly increased 1.45-fold. Testicular aromatase activity was strongly correlated with aromatase mRNA level and serum estradiol level. These data suggest that the change in testicular aromatase expression might be, in part, a compensatory mechanism for the bone mineral deficiency induced by the Ca-deficient diet in aged male rats.
    Metabolism 11/2002; 51(10):1230-4. · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The possible role of abnormal T cell-dependent B-cell activation in Graves' disease was investigated by comparing lymphocyte subset distribution and the production of soluble CD8 (sCD8), sCD23, IL-10 and IL-12 by peripheral blood cells (PBMC) and thyroid-infiltrating lymphocytes (TL) in vitro. In TL, the percentage of CD8(+) cells was slightly higher and the sCD8 concentration was significantly higher than in PBMC. The ratio CD23(+) cells to CD20(+) cells (activated B/pan B cells) was increased in TL compared to PBMC from Graves' or normal controls, although the percentage of CD20(+) cells was decreased. Compared to PBMC in Graves' disease, the relative ratio of IL-10 to IL-12 release (IL-10/IL-12) by unstimulated TL was increased, despite a lack of significant difference between PBMC and TL in mean values for either IL-10 or IL-12 secretion. Incubating PBMC with a combination of anti-CD40 monoclonal antibodies and interleukin-4 (IL-4) resulted in B cell activation, reflected in an increase in the sCD23 level in both controls and Graves' patients, but especially prominent in the latter. Stimulation with anti-CD40 antibody and IL-4 also decreased the percentage of CD8(+) cells in PBMC but not TL from both Graves' disease and normal controls, and the percentage of CD8(+) cells in TL was higher than PBMC after the stimulation. The sCD23 concentration in TL was decreased compared to PBMC both in patients with Graves' disease and normal controls. However, in contrast to the increased responses observed in Graves' PBMC or normal controls after stimulation, sCD23 levels remained the same in stimulated TL from Graves' patients. This combination of B cell stimulants increased production of IL-10 in PBMC but not in TL obtained from patients with Graves' disease, and the increased IL-10/IL-12 ratio declined to a value no different from that in PBMC group after stimulation. Thus, T cell-dependent B-cell activation via a CD40 pathway may cause a shift in the Th(1)/Th(2) balance to Th(2) dominance in Graves' disease, while increased CD8(+) cells in TL may suppress sCD23 production and IL-10-producing Th(2) cells.
    Cytokine 09/2002; 19(3):107-14. · 2.52 Impact Factor
  • Diabetes Research and Clinical Practice - DIABETES RES CLIN PRACT. 01/2000; 50:173-173.
  • Diabetes Research and Clinical Practice - DIABETES RES CLIN PRACT. 01/2000; 50:91-91.
  • Diabetes Research and Clinical Practice - DIABETES RES CLIN PRACT. 01/2000; 50:132-132.