K Sogawa

Tohoku University, Sendai, Kagoshima-ken, Japan

Are you K Sogawa?

Claim your profile

Publications (163)619.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitory Per/Arnt/Sim (PAS) domain protein (IPAS) is a splice variant of hypoxia-inducible factor (HIF)-3α, and possesses two entirely different functions. One is as a transcriptional repressor against HIF-dependent hypoxic gene activation. The other is as a pro-apoptotic factor by direct binding to the pro-survival protein Bcl-xL and its related proteins on mitochondria. Presently, the regulatory mechanism that determines the intracellular distribution of IPAS to fulfill each of the two functions is unknown. As a first step towards elucidation of the mechanism, nucleocytoplasmic transport signals of IPAS were explored. A bipartite-like nuclear localization signal (NLS) was found in the N-terminal region by the deletion and mutation analysis of EGFP-IPAS. In addition, the helix-loop-helix domain showed weak nuclear import/retention activity. A leptomycin B-sensitive nuclear export signal (NES) was localized in the C-terminal region of the protein. A proline-rich region supported the NES activity. These NLS and NES are not carried by the other variants of HIF-3α due to differential exon usage. These results strongly suggest that IPAS is a nucleocytoplasmic shuttling protein.
    Journal of Biochemistry 10/2013; · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nature of functional proteins adsorbed on solid surfaces is interesting from the perspective of developing of bioelectronics and biomaterials. Here we present evidence that citrine (one of yellow fluorescent protein variants) adsorbed on modified gold surfaces would not undergo denaturation and energy transfer among the adsorbed citrine molecules would occur. Gold substrates were chemically modified with 3-mercaptopropionic acid and tert-butyl mercaptan for the preparation of hydrophilic and hydrophobic surfaces, respectively. A pure solution of citrine was dropped and dried on the modified gold substrates and their surface morphology was studied with scanning tunnelling microscopy (STM). The obtained STM images showed multilayers of citrine adsorbed on the modified surfaces. On hydrophobic surfaces, citrine was adsorbed more randomly, formed various non-uniform aggregates, while on hydrophilic surfaces, citrine appeared more aligned and isolated uniform protein clusters were observed. Fluorescence lifetime and anisotropy decay of these dried citrine layers were also measured using the time correlated single photon counting method. Fluorescence anisotropy of citrine on the hydrophobic surface decayed faster than citrine on the hydrophilic surface. From these results we concluded that fluorescence energy migration occurred faster among citrine molecules which were randomly adsorbed on the hydrophobic surface to compare with the hydrophilic surface.
    Applied Surface Science 09/2013; · 2.54 Impact Factor
  • Source
    02/2012; , ISBN: 978-953-51-0152-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular response to hypoxia plays an important role in both circulatory and pulmonary diseases and cancer. Hypoxia-inducible factors (HIFs) are major transcription factors regulating the response to hypoxia. The α-subunits of HIFs are hydroxylated by members of the prolyl-4-hydroxylase domain (PHD) family, PHD1, PHD2, and PHD3, in an oxygen-dependent manner. Here, we report on the identification of ATF4 as a protein interacting with PHD1 as well as PHD3, but not with PHD2. The central region of ATF4 including the Zipper II domain, ODD domain and β-TrCP recognition motif were involved in the interaction with PHD1. Coexistence of PHD1 stabilized ATF4, as opposed to the destabilization of ATF4 by PHD3. Moreover, coexpression of ATF4 destabilized PHD3, whereas PHD1 stability was not affected by the presence of ATF4. Mutations to alanine of proline residues in ATF4 that satisfied hydroxylation consensus by PHDs did not affect binding activity of ATF4 to PHD1 and PHD3. Furthermore, in vitro prolyl hydroxylation assay clearly indicated that ATF4 did not serve as a substrate of both PHD1 and PHD3. Coexpression of PHD1 or PHD3 with ATF4 repressed the transcriptional activity of ATF4. These results suggest that PHD1 and PHD3 control the transactivation activity of ATF4.
    Experimental Cell Research 09/2011; 317(20):2789-99. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins.
    Chemistry - An Asian Journal 09/2011; 6(11):2956-60. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation is often accompanied by hypoxia. However, crosstalk between signalling pathways activated by inflammation and signalling events that control adaptive response to hypoxia is not fully understood. Here we show that exposure to tumour necrosis factor-α (TNF-α) activates expression of the inhibitory PAS domain protein (IPAS) to suppress the hypoxic response caused by hypoxia-inducible factor (HIF)-1 and HIF-2 in rat pheochromocytoma PC12 cells but not in human hepatoma Hep3B cells. This induction of IPAS was dependent on the nuclear factor-κB (NF-κB) pathway and attenuated hypoxic induction of HIF-1 target genes such as tyrosine hydroxylase (TH) and vascular endothelial growth factor (VEGF). HIF-dependent reporter activity in hypoxia was also decreased following TNF-α treatment. Knockdown of IPAS mRNA by small interfering RNA (siRNA) restored the TNF-α-suppressed hypoxic response. These results indicate that TNF-α is a cell-type specific suppressor of HIFs and suggest a novel crosstalk between stimulation by inflammatory mediators and HIF-dependent hypoxic response.
    Journal of Biochemistry 05/2011; 150(3):311-8. · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS) is a dominant negative transcription factor that represses hypoxia-inducible factor 1 (HIF-1) activity. In this study, we show that IPAS also functions as a pro-apoptotic protein through binding to pro-survival Bcl-2 family members. In a previous paper, we reported that NF-κB-dependent IPAS induction by cobalt chloride repressed the hypoxic response in PC12 cells. We found that prolonged incubation under the same conditions caused apoptosis in PC12 cells. Repression of IPAS induction protected cells from apoptosis. Furthermore, knockdown of IPAS recovered cell viability. EGFP-IPAS protein was localized in both the nucleus and the cytoplasm, with a large fraction associated with mitochondria. Mitochondrial IPAS induced mitochondria depolarization and caspase-3 activation. Immunoprecipitation assays revealed that IPAS is associated with Bcl-x(L), Bcl-w and Mcl-1. The association of IPAS with Bcl-x(L) was also observed in living cells by the FLIM-based FRET analysis, indicating direct binding between the two proteins. IPAS contributed to dysfunction of Bcl-x(L) by inhibiting the interaction of Bcl-x(L) with Bax. These results demonstrate that IPAS functions as a dual function protein involved in transcription repression and apoptosis.
    Cell death and differentiation 05/2011; 18(11):1711-25. · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cobalt chloride (CoCl(2)) can mimic hypoxia in inducing hypoxia-inducible factor 1 (HIF-1). Several cultured cells were examined for susceptibility to CoCl(2) in DMEM, MEM and RPMI 1640 medium. Here we report that HIF-1α expression of mammalian cells by CoCl(2) was largely dependent on the culture medium. HIF-1α protein and hypoxia response element (HRE)-dependent reporter activity were strongly induced in RPMI 1640 but not in DMEM in several cultured cells including MCF-7, a human breast cancer cell line. Analysis of causal nutrients has revealed that histidine, which is contained richer in DMEM, acts as the inhibitory nutrient for cobalt-induced HIF-1α expression of MCF-7 cells in DMEM. D-Histidine also inhibited the HIF-1α activity at the same level as L-histidine, suggesting that sequestration of free cobaltous ion by chelation with histidine was the cause of the inhibition. These results demonstrate that selection of the culture medium must be considered with caution in cell culture experiments using CoCl(2) as a hypoxia-mimetic reagent.
    Journal of Biochemistry 10/2010; 149(2):171-6. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dioxins, which are unintentionally generated toxic pollutants, exert a variety of adverse effects on organisms. The majority of these effects, which include teratogenesis, immunosuppression, tumor promotion, and endocrine disruption, are mediated through aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. Genetic variations in AhR result in different survivability under exposure to dioxin contamination, which might affect the genetic structure of wildlife populations through differential susceptibility to dioxin exposure. The aim of this study was to clarify the polymorphisms of AhR in Japanese field mice, Apodemus speciosus, and their functional differences in order to develop a molecular indicator for dioxin sensitivity. Wild Japanese field mice had abundant polymorphisms in AhR coding region. Seventy-one single nucleotide polymorphisms, 27 of which occur amino acid substitutions, and consequently 49 alleles were identified in 63 individuals. In the functional analysis of AhR variants using transient reporter assays, a Gln to Arg mutation at amino acid 799 exhibited a significant decrease in the level of transactivational properties (p=0.015) which might modify the dioxin susceptibility of an individual.
    Environmental toxicology and pharmacology. 05/2010; 29(3):280-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loose interaction between the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was visualized in living CHO-K1 cells by fluorescence resonance energy transfer (FRET), using time-domain fluorescence lifetime imaging microscopy. FRET between active tetrameric subunits of GAPDH linked to cerulean or citrine was observed, and this FRET signal was significantly attenuated by coexpression of PGK. Also, direct interaction between GAPDH-citrine and PGK-cerulean was observed by FRET. The strength of FRET signals between them was dependent on linkers that connect GAPDH to citrine and PGK to cerulean. A coimmunoprecipitation assay using hemagglutinin-tagged GAPDH and FLAG-tagged PGK coexpressed in CHO-K1 cells supported the FRET observation. Taken together, these results demonstrate that a complex of GAPDH and PGK is formed in the cytoplasm of living cells.
    FEBS Journal 03/2010; 277(5):1310-8. · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LBP-1 proteins form dimers and act as transcription factors that activate a number of genes related to cell growth and differentiation. LBP-1a and LBP-1c are localized in the cytoplasm when transiently expressed in cultured cells, but translocated into the nucleus after forming heterodimers with LBP-1b, which is a splicing variant of LBP-1a with an intrinsic nuclear localization signal (NLS). Here, we report that LBP-1b showed potent transactivation activity, and that forcibly expressed LBP-1a and LBP-1c in the nucleus essentially exhibited very little or no transactivation activity. Mutations in the NLS that abolished the NLS activity of LBP-1b also abrogated the transactivation activity. We have found that LBP-1 proteins contain a putative sterile alpha motif domain indispensable for their dimerization capability in the C-terminal region. To demonstrate whether homo- and heterodimers composed of LBP-1a and/or LBP-1c are generated in the nucleus, we applied the FLIM-based fluorescence resonance energy transfer imaging technique to living cells. It revealed that dimers composed of LBP-1a and LBP-1c were re-formed probably by a partner-exchange of LBP-1b-containing heterodimers.
    Genes to Cells 10/2009; 14(10):1183-96. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factor 1 (HIF-1) is a master regulator for hypoxic activation of genes for angiogenesis, hormone synthesis, glycolysis and cell survival. In addition to hypoxic stimulus, various effectors and reagents were reported to affect HIF-1 activity. Here, we show that cyclic AMP (cAMP) down-regulates the HIF-1 activity in pheochromocytoma PC12 cells but not in Hep3B and HeLa cells. Hypoxia response element-dependent reporter activity was decreased by the addition of dibutyryl cAMP. Expression of protein kinase A (PKA) catalytic alpha-subunits repressed the HIF-1 activity. HIF-1alpha and HLF (HIF-2alpha or EPAS1) protein levels were decreased by the treatment with dibutyryl cAMP. Although CREB was served as a negative factor for the HIF-1 activity, it may not be a major PKA target in the cAMP-dependent HIF-alpha repression pathway. Induction of hypoxia responsive genes was suppressed by dibutyryl cAMP. Our results provide additional insight into a regulatory mechanism of hypoxic response.
    Journal of Biochemistry 09/2009; 146(6):839-44. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnesium deficiency is suggested to contribute to many age-related diseases. Hypoxia-inducible factor 1alpha (HIF-1alpha) is known to be a master regulator of hypoxic response. Here we show that hypomagnesemia suppresses reactive oxygen species (ROS)-induced HIF-1alpha activity in paraganglion cells of the adrenal medulla and carotid body. In PC12 cells cultured in the low magnesium medium and treated with cobalt chloride (CoCl(2)) or exposed to intermittent hypoxia, ROS-mediated HIF-1alpha activity was suppressed. This suppression was due to up-regulation of inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS) that was caused by NF-kappaB activation, which resulted from ROS and calcium influx mainly through the T-type calcium channels. Induction of tyrosine hydroxylase, a target of HIF-1, by CoCl(2) injection was suppressed in the adrenal medulla of magnesium-deficient mice because of up-regulation of IPAS. Also in the carotid body of magnesium-deficient mice, CoCl(2) and chronic intermittent hypoxia failed to enhance the tyrosine hydroxylase expression. These results demonstrate that serum magnesium levels are a key determinant for ROS-induced hypoxic responses.
    Journal of Biological Chemistry 06/2009; 284(28):19077-89. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factor-1 (HIF-1) is a major transcription factor regulating the response of tumor cells to hypoxia and is comprised of HIF-1alpha and Arnt (HIF-1beta). In mammalian cells, HIF-1 protein levels are regulated by three HIF-prolyl hydroxylases, termed PHD1, PHD2 and PHD3. To assess whether intracellular localization of PHD1 and PHD2 affects the hypoxic response via HIF-1, we investigated the localization signal of PHDs. PHD1 possessed at least one nuclear localization signal (NLS), and PHD2 contained a region as essential for nuclear export in their N-terminal region. Treatment of cells with leptomycin B revealed that PHD2 was able to shuttle between the cytoplasm and the nucleus. Reporter assay indicated that differences in the intracellular distribution of PHD1 did not influence on HIF-1alpha activity. However, a PHD2 mutant lacking the region for nuclear export exhibited significantly reduced effect to HIF-1alpha activity compared to wild-type PHD2, suggesting that the regulation of the intracellular distribution of PHD2 is an effective pathway for the control of the hypoxic response.
    Biochimica et Biophysica Acta 03/2009; 1793(5):792-7. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor Klf4 has demonstrated activity in the reprogramming of somatic cells to a pluripotent state, but the molecular mechanism of this process remains unknown. It is, therefore, of great interest to understand the functional role of Klf4 and related genes in ESC regulation. Here, we show that homozygous disruption of Klf5 results in the failure of ESC derivation from ICM cells and early embryonic lethality due to an implantation defect. Klf5 KO ESCs show increased expression of several differentiation marker genes and frequent, spontaneous differentiation. Conversely, overexpression of Klf5 in ESCs suppressed the expression of differentiation marker genes and maintained pluripotency in the absence of LIF. Our results also suggest that Klf5 regulates ESC proliferation by promoting phosphorylation of Akt1 via induction of Tcl1. These results, therefore, provide new insights into the functional and mechanistic role of Klf5 in regulation of pluripotency.
    Cell stem cell 12/2008; 3(5):555-67. · 23.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hypoxia-inducible factors (HIFs) play a central role in oxygen homeostasis. HIF prolyl hydroxylases (PHDs) modify HIFalpha subunits and thereby target them for proteasomal degradation. Mammalian PHDs comprise three isozymes, PHD1, PHD2 and PHD3, and belong to the iron(II)-2-oxoglutarate-dependent dioxygenase family. We have expressed full-length human PHD1 in Escherichia coli, and purified it to apparent homogeneity by immobilized Ni-affinity chromatography, cation-exchange HPLC followed by gel filtration. Fe(2+) was found to have EC(50) value of 0.64 microM and the purified enzyme showed maximal activity at 10 microM Fe(2+). The IC(50) values for transition metal ions, Co(2+), Ni(2+) and Cu(2+), were 58, 35 and 220 microM, respectively, in the presence of 100 microM Fe(2+). Mn(2+) did not affect the activity <1 mM. Many transcription-related proteins are regulated by phosphorylation. Thus, recombinant PHD1 was examined for in vitro phosphorylation using protein kinase A, protein kinase Calpha, casein kinase I and II and Erk2. The protein was most strongly phosphorylated by protein kinase Calpha, and the phosphorylation sites were found to be Ser-132, Ser-226 and Ser-234. Mutation of Ser-132 or Ser-234 to Asp or Glu diminished the enzymatic activity to 25-60%, while mutation of Ser-226 scarcely influenced the activity.
    Journal of Biochemistry 09/2008; 144(5):555-61. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we have investigated the photochemical properties and photodynamic effects of ruthenium phthalocyanine (RuPc(CO)(Py)) and naphthalocyanine (RuNc(CO)(Py)) complexes. When a nanosecond-pulsed laser is used, the photodecarbonylation of our Ru complexes efficiently proceeds via stepwise two-photon excitation, while the reaction yields are negligibly small when a continuous-wave (CW) laser is employed. The pulsed laser selective photodecarbonylation decreases the Q-band absorbance, which satisfies what the photodynamic therapy (PDT) requires of the photobleaching. For RuPc(CO)(Py), the photochemical reactions including both the photodecarbonylation and just photobleaching occur in HeLa cells in vitro. Toxicity and phototoxicity tests indicate that our RuPc(CO)(Py) and RuNc(CO)(Py) complexes in concentrations of 0.3-1 microM and 1-2 microM, respectively, are applicable as PDT agents. The phototoxicity is consistent with the photochemical properties of these complexes, namely, excited triplet lifetimes (10 and 4.8 micros for the Pc and Nc complexes, respectively) and singlet oxygen yields (0.48 and 0.35 for the Pc and Nc complexes, respectively). On the basis of these results, we propose a novel concept for achieving a greater depth of necrosis in PDT as follows: (1) PDT of upper cellular layers using CW-laser irradiation; (2) efficient photobleaching in upper cellular layers using pulsed dye-laser irradiation, which results in an increase in the therapeutic depth of red light; (3) PDT directed toward deeper tumor tissues using CW laser irradiation. In addition, these Ru complexes are promising as CO release agents for investigative biochemistry.
    The Journal of Physical Chemistry B 04/2008; 112(10):3138-43. · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor von Hippel-Lindau (VHL) gene product forms a complex with elongin B and elongin C, and acts as a recognition subunit of a ubiquitin E3 ligase. Interactions between components in the complex were investigated in living cells by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM). Elongin B-cerulean or cerulean-elongin B was coexpressed with elongin C-citrine or citrine-elongin C in CHO-K1 cells. FRET signals were examined by measuring a change in the fluorescence lifetime of donors and by monitoring a corresponding fluorescence rise of acceptors. Clear FRET signals between elongin B and elongin C were observed in all combinations, except for the combination of elongin B-cerulean and citrine-elongin C. Although similar experiments to examine interaction between pVHL30 and elongin C linked to cerulean or citrine were performed, FRET signals were rarely observed among all the combinations. However, the signal was greatly increased by coexpression of elongin B. These results, together with results of coimmunoprecipitation experiment using pVHL, elongin C and elongin B, suggest that a conformational change of elongin C and/or pVHL was induced by binding of elongin B. The conformational change of elongin C was investigated by measuring changes in the intramolecular FRET signal of elongin C linked to cerulean and citrine at its N- and C-terminus, respectively. A strong FRET signal was observed in the absence of elongin B, and this signal was modestly increased by coexpression of elongin B, demonstrating that a conformation change of elongin C was induced by the binding of elongin B.
    FEBS Journal 12/2007; 274(21):5567-75. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Ah receptor (AhR) is a ligand-activated transcription factor. Five amino acids as candidate amino acids necessary for ligand binding within or near the ligand-binding domain were selected based on their evolutional conservation and their aromatic nature that could interact with xenobiotic ligands. These amino acids were changed to Ala, and the mutated AhRs were subjected to a test of their transactivation activity in HeLa cells. Mutation of Phe318 completely lost its activity whereas other mutations only weakly impaired activity. The Leu-substituted mutant, AhR(Phe318Leu), activated the luciferase activity to the level comparable to wild type in the cells treated with 3-methylcholanthrene (MC) but not at all with beta-naphthoflavone (beta-NF). Ligand-binding activity of mutants was examined with [3H]MC in vitro. AhR(Phe318Ala) could not bind to [3H]MC. [3H]MC bound by AhR(Phe318Leu) was competed with unlabeled MC but not with beta-NF. A structural model of the ligand-binding domain was constructed.
    Biochemical and Biophysical Research Communications 04/2007; 354(2):396-402. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We measured the fluorescence decays and spectra of perylene adsorbed from solution into zeolite X crystals of 2-3 microm in diameter at the level of individual crystals by the application of a microscopy method coupled with a single photon counting apparatus and a multichannel spectrophotometer. We found that both decays and spectra are particle-dependent, i.e. a particle-to-particle difference was observed for the fluorescence decay curves at a fixed loading level along with a particle-dependent spectral change due to the various contribution of excimer emission band relative to those of three monomers. These findings are due to a non-homogeneous distribution which is confirmed by the various emission intensities of perylene-loaded zeolite crystals observed by fluorescence microscopy. Previously, a homogeneous distribution of the guest between zeolite crystals has been just taken for granted and not justified by experiment. The present result suggests that commonly employed collective measurements such as UV-VIS absorption and emission spectroscopies, IR and Raman spectroscopies, and NMR of bulk zeolite powders provide only averaged results and may sometimes suffer from acquiring precise molecular level pictures.
    Physical Chemistry Chemical Physics 04/2006; 8(12):1451-8. · 4.20 Impact Factor

Publication Stats

6k Citations
619.75 Total Impact Points

Institutions

  • 1986–2013
    • Tohoku University
      • • Department of Biomolecular Sciences
      • • Graduate School of Life Sciences
      • • Department of Chemistry
      Sendai, Kagoshima-ken, Japan
  • 2008
    • University of Tsukuba
      • Institute of Basic Medical Sciences
      Tsukuba, Ibaraki-ken, Japan
  • 2000
    • The University of Tokushima
      • School of Medicine
      Tokusima, Tokushima, Japan
    • Ehime University
      • Department of Oral and Maxillofacial Surgery
      Matuyama, Ehime, Japan
  • 1998
    • Kagawa University
      • Faculty of Agriculture
      Japan
  • 1996
    • Tokyo Metropolitan Institute of Medical Science
      Edo, Tōkyō, Japan
  • 1984–1990
    • Saitama Cancer Center
      Saitama, Saitama, Japan
  • 1983–1990
    • Japanese Foundation for Cancer Research
      Edo, Tōkyō, Japan
  • 1989
    • Research Institute of Tuberculosis
      Edo, Tōkyō, Japan
    • The University of Tokyo
      • Department of Biophysics and Biochemistry
      Tokyo, Tokyo-to, Japan
  • 1987
    • Kyushu University
      • Faculty of Sciences
      Fukuoka-shi, Fukuoka-ken, Japan
  • 1985
    • American Oil Chemists' Society
      American Fork, Utah, United States
  • 1976–1982
    • Kyoto University
      • Primate Research Institute
      Kioto, Kyōto, Japan