Keiko Miyazaki

Institute of Cancer Research, Londinium, England, United Kingdom

Are you Keiko Miyazaki?

Claim your profile

Publications (4)15.86 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: To evaluate dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for monitoring and assessing treatment response in patients with neuroendocrine liver metastases treated using yttrium 90 ((90)Y)-labeled octreotide ((90)Y-DOTATOC). The study was approved by the local research and ethics committee and patient informed consent was obtained. Twenty patients with liver metastases from neuroendocrine tumors underwent T1-weighted DCE MR imaging of the liver before and at 2 months after intravenous (90)Y-DOTATOC treatment. Regions of interest were drawn around target lesions, as well as along liver outlines for each patient. A dual-input single-compartment model was used to compute parameters including fractional distribution volume and the arterial flow fraction. Pre- and posttreatment values were compared using Wilcoxon signed rank test. Treatment response was defined as showing a greater than 50% reduction in the nadir chromogranin A level within the 1st year after treatment. Pretreatment values of responders and nonresponders were compared using the Mann-Whitney test. A two-tailed P value of .008 or less, which accounts for multiple testing, was considered to indicate a significant difference. In responders, tumor and whole liver distribution volume significantly increased after treatment (median tumor distribution volume, 0.182 vs 0.244; median whole liver distribution volume, 0.175 vs 0.207; P = .008). The pretreatment whole liver distribution volume was significantly lower in responders (median, 0.175 vs 0.248; P = .003), while pretreatment tumor arterial flow fraction was significantly higher in responders (median, 1.000 vs 0.7 ± 1, P = .006). DCE MR imaging may be used to monitor the effects of peptide receptor radiolabeled targeted therapy in patients with neuroendocrine tumors liver metastases; a lower pretreatment distribution volume and high arterial flow fraction was associated with a better response to treatment.
    Radiology 02/2012; 263(1):139-48. · 6.34 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Neuroendocrine hepatic metastases exhibit various contrast uptake enhancement patterns in dynamic contrast-enhanced MRI. Using a dual-input two-compartment distributed parameter model, we analyzed the dynamic contrast-enhanced MRI datasets of seven patient study cases with the aim to relate the tumor contrast uptake patterns to parameters of tumor microvasculature. Simulation studies were also performed to provide further insights into the effects of individual microcirculatory parameter on the tumor concentration-time curves. Although the tumor contrast uptake patterns can be influenced by many parameters, initial results indicate that hepatic blood flow and the ratio of fractional vascular volume to fractional interstitial volume may potentially distinguish between the patterns of neuroendocrine hepatic metastases.
    Magnetic Resonance in Medicine 01/2011; 65(1):250-60. · 3.27 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a valuable tool for assessing treatment response to novel cancer therapeutics. With appropriate data acquisition, quantitative functional parameter estimates can be obtained by fitting a model to the data. This research focuses on applying a dual-input single-compartment pharmacokinetic model to breath-hold DCE-MRI imaging of the liver. In this paper, the use of two breath-holds, providing greater temporal information, is compared with a single breath-hold approach. Computer simulations are used to assess the accuracy, precision and sensitivity to input function errors obtained for parameters estimated from the two imaging protocols. Data from ten patients were analysed to assess the noise statistics obtained from the two breath-hold protocols. The noise statistics were used with a pharmacokinetic liver model to simulate data, from which the estimation accuracy, precision and sensitivity for the two protocols were assessed. Data from the ten patients were also analysed, and the estimates were compared with literature values. This work demonstrates the feasibility of obtaining functional liver perfusion estimates over a 3D volume using a sequential breath-hold protocol. The simulation results show that the protocol consisting of two images per breath-hold is to be preferred as it requires identical patient co-operation, but provides parameter estimates that have superior accuracy and precision.
    Physics in Medicine and Biology 05/2009; 54(7):2197-215. · 2.70 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hepatic metastases are arterially supplied, resulting in an elevated hepatic perfusion index (HPI). The purpose of this study was to use dynamic contrast-enhanced (DCE) MR imaging to quantify the HPI of metastases and the liver before and after treatment with a novel antiangiogenic drug. Ten patients with known metastatic liver disease underwent DCE-MR studies. HPIs of metastases and whole liver were derived using regions of interest (ROIs) and calculated on a pixel-by-pixel basis from quantified changes in gadopentetate dimeglumine (Gd-DTPA) concentration. The HPI measurement error prior to treatment was derived by the Bland-Altman analysis. The median HPI before and after treatment with antiangiogenic drug BIBF 1120 were compared using the Wilcoxon signed rank test. Prior to treatment, the median HPI of metastases, 0.75 +/- 0.14, was significantly higher than that of the whole liver, 0.66 +/- 0.16 (p < 0.01). Bland-Altman reproducibility coefficients of the median HPI from metastases and whole liver were 13.0 and 5.1% respectively. The median HPI of metastases decreased significantly at 28 days after treatment with BIBF 1120 (p < 0.05). This pilot study demonstrates that HPI determined using quantified Gd-DTPA concentration is reproducible and may be useful for monitoring antiangiogenic treatment response of hepatic metastases.
    European Radiology 07/2008; 18(7):1414-21. · 3.55 Impact Factor