Kalliopi Apostolopoulou

Athens State University, Athens, Alabama, United States

Are you Kalliopi Apostolopoulou?

Claim your profile

Publications (5)30.32 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
    Molecular Cancer Research 11/2009; 7(12):1902-19. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network. Surprisingly, induction of p73, an established E2F1 target, was also DNA damage response-dependent. Furthermore, a global proteome analysis associated with bioinformatics revealed novel E2F1-regulated genes and potential E2F1-driven signaling networks that could provide useful targets in challenging this aggressive neoplasm by innovative therapies.
    American Journal Of Pathology 08/2009; 175(1):376-91. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZBTB7A (Pokemon) is a member of the POK family of transcriptional repressors. Its main function is the suppression of the p14ARF tumour suppressor gene. Although ZBTB7A expression has been found to be increased in various types of lymphoma, there are no reports dealing with its expression in solid tumours. Given that p14(ARF) inhibits MDM2, the main negative regulator of p53, we hypothesized that overexpression of ZBTB7A could lead indirectly to p53 inactivation. To this end, we examined the status of ZBTB7A and its relationship with tumour kinetics (proliferation and apoptosis) and nodal members of the p53 network in a panel of 83 non-small cell lung carcinomas (NSCLCs). We observed, in the majority of the samples, prominent expression of ZBTB7A in the cancerous areas compared to negligible presence in the adjacent normal tissue elements. Gene amplification (two- to five-fold) was found in 27.7% of the cases, denoting its significance as a mechanism driving ZBTB7A overproduction in NSCLCs. In the remaining non-amplified group of carcinomas, analysis of the mRNA and protein expression patterns suggested that deregulation at the transcriptional and post-translational level accounts for ZBTB7A overexpression. Proliferation was associated with ZBTB7A expression (p = 0.033) but not apoptosis. The association with proliferation was reflected in the positive correlation between ZBTB7A expression and tumour size (p = 0.018). The overexpression of ZBTB7A in both p53 mutant and p53 wild-type cases, implies either a synergistic effect or that ZBTB7A exerts its oncogenic properties independently of the p14(ARF)-MDM2-p53 axis. The concomitant expression of ZBTB7A with p14(ARF) (p = 0.039), instead of the anticipated inverse relation, supports the latter notion. In conclusion, regardless of the pathway followed, the distinct expression of ZBTB7A in cancerous areas and the association with proliferation and tumour size pinpoints a role for this novel cell cycle regulator in the pathogenesis of lung cancer.
    The Journal of Pathology 12/2007; 213(3):294-302. · 7.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowing the status of molecules involved in cell cycle control in cancer is vital for therapeutic approaches aiming at their restoration. The p27(KIP1) and p57(KIP2) cyclin-dependent kinase inhibitors are nodal factors controlling normal cell cycle. Their expression in normal lung raises the question whether they have a mutual exclusive or redundant role in nonsmall cell lung cancer (NSCLC). A comparative comprehensive analysis was performed in a series of 70 NSCLCs. The majority of cases showed significantly reduced expression of both members compared to normal counterparts. Low KIP protein levels correlated with increased proliferation, which seems to be histological subtype preponderant. At mechanistic level, degradation by SKP2 was demonstrated, in vivo and in vitro, by siRNA-methodology, to be the most important downregulating mechanism of both KIPs in NSCLC. Decreased p57(KIP) (2)-transcription complements the above procedure in lowering p57(KIP2)-protein levels. Methylation was the main cause of decreased p57(KIP) (2)-mRNA levels. Allelic loss and imprinting from LIT1 mRNA contribute also to decreased p57(KIP2) transcription. In vitro recapitulation of the in vivo findings, in A549 lung cells (INK4A-B((-/-))), suggested that inhibition of the SKP2-degradation mechanism restores p27(KIP1) and p57(KIP2) expression. Double siRNA treatments demonstrated that each KIP is independently capable of restraining cell growth. An additional demethylation step is required for complete reconstitution of p57(KIP2) expression in NSCLC.
    International Journal of Cancer 01/2007; 119(11):2546-56. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome abnormalities are observed in human cancers and have been associated with aneuploidy, a driving force in tumour progression. However, the exact pathways that tend to cause centrosome abnormalities have not been fully elucidated in human tumours. Using a series of 68 non-small-cell lung carcinomas and an array of in vitro experiments, the relationship between centrosome abnormalities, aneuploidy, and the status of key G1 to S-phase transition cell-cycle molecules, involved in the regulation of centrosome duplication, was investigated. Centrosome amplification and structural abnormalities were common (53%), were strongly related to aneuploidy, and, surprisingly, were even seen in adjacent hyperplastic regions, suggesting the possibility that these are early lesions in lung carcinogenesis. Cyclin E and E2F1 overexpression, but not p53 mutation, was observed to correlate with centrosome abnormalities in vivo (p = 0.029 and p = 0.015, respectively). This was further strengthened by the observation that cyclin E was specifically present in the nucleus and/or cytoplasm of the cells that contained centrosome aberrations. The cytoplasmic cyclin E signal may be attributed, in part, to the presence of truncated low-molecular-weight isoforms of cyclin E. In order to isolate the effect of cyclin E on the appearance of centrosome abnormalities, a U2OS tetracycline-repressible cyclin E cell line that has a normal centrosome profile by default was used. With this system, it was confirmed in vitro that persistent cyclin E overexpression is sufficient to cause the appearance of centrosome abnormalities.
    The Journal of Pathology 09/2006; 209(4):512-21. · 7.59 Impact Factor