Jun Hoseki

Kyoto University, Kioto, Kyōto, Japan

Are you Jun Hoseki?

Claim your profile

Publications (22)125.35 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.
    Scientific Reports 03/2014; 4:4442. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunctions of the mitochondria and the ubiquitin-proteasome system, as well as generation of reactive oxygen species (ROS), are linked to many aging-related neurodegenerative disorders. However, the order of these events remains unclear. Here, we show that the initial impairment occurs in mitochondria under proteasome inhibition. Fluorescent redox probe measurements revealed that proteasome inhibition led to mitochondrial oxidation followed by cytosolic oxidation, which could be prevented by a mitochondrial-targeted antioxidant or antioxidative enzyme. These observations demonstrated that proteasome dysfunction causes damage to mitochondria, leading them to increase their ROS production and resulting in cytosolic oxidation. Moreover, several antioxidants found in foods prevented intracellular oxidation and improved cell survival by maintaining mitochondrial membrane potential and reducing mitochondrial ROS generation. However, these antioxidant treatments did not decrease the accumulation of protein aggregates caused by inhibition of the proteasome. These results suggested that antioxidative protection of mitochondria maintains cellular integrity, providing novel insights into the mechanisms of cell death caused by proteasome dysfunction.
    Scientific reports. 01/2014; 4:5896.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During endoplasmic reticulum (ER)-associated degradation (ERAD), terminally-misfolded proteins are retrotranslocated from the ER to the cytosol and are degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. However, the mechanisms involved in ERAD of non-glycoproteins are poorly understood. Here, we show that non-glycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the non-glycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates was inhibited, glycoproteins were also targeted to the non-glycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and non-glycoproteins exist in mammalian cells and these pathways are interchangeable under ER stress conditions.
    Molecular biology of the cell 08/2013; · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological roles of the thioredoxin isozymes in the yeast Saccharomyces cerevisiae were investigated using a novel FRET-based redox probe, Redoxfluor. After establishing responsiveness of the probe toward thioredoxin, we followed the fluorescence signal of Redoxfluor expressed in the yeast and found that one of the thioredoxin isozymes, Trx2, was required for maintaining the redox status when stationary culture of the organism was exposed to starvation and mild-heat stresses. The failure to maintain redox balance under the tested condition preceded decreased viability of the trx2 mutants, indicating the functional importance of the cytoplasmic thioredoxin in adaptation to environmental changes.
    FEBS letters 02/2013; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 47 (Hsp47) acts as a client-specific chaperone for collagen and plays a vital role in collagen maturation and the consequent embryonic development. In addition, this protein can be a potential target for the treatment of fibrosis. Despite its physiological and pathological importance, little is currently known about the collagen-binding mode of Hsp47 from a structural aspect. Here, we describe an NMR study that was conducted to identify the collagen-binding site of Hsp47. We used chicken Hsp47, which has higher solubility than its human counterpart, and applied a selective (15)N-labeling method targeting its tryptophan and histidine residues. Spectral assignments were made based on site-directed mutagenesis of the individual residues. By inspecting the spectral changes that were observed upon interaction with a trimeric collagen peptide and the mutational data, we successfully mapped the collagen-binding site in the B/C β-barrel domain and a nearby loop in a 3D-homology model based upon a serpin fold. This conclusion was confirmed by mutational analysis. Our findings provide a molecular basis for the design of compounds that target the interaction between Hsp47 and procollagen as therapeutics for fibrotic diseases.
    PLoS ONE 01/2012; 7(9):e45930. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.
    Molecular cell 02/2011; 41(4):432-44. · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (-171.5 mV; 30 degrees C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.
    Journal of Biological Chemistry 03/2010; 285(10):7135-42. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ARMET is an endoplasmic reticulum (ER) stress-inducible protein that is required for maintaining cell viability under ER stress conditions. However, the exact molecular mechanisms by which ARMET protects cells are unknown. Here, we have analyzed the solution structure of ARMET. ARMET has an entirely alpha-helical structure, which is composed of two distinct domains. Positive charges are dispersed on the surfaces of both domains and across a linker structure. Trypsin digestion and (15)N relaxation experiments indicate that the tumbling of the N-terminal and C-terminal domains is effectively independent. These results suggest that ARMET may hold a negatively charged molecule using the two positively charged domains.
    FEBS letters 03/2010; 584(8):1536-42. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The folding of secretory and membrane proteins takes place in the endoplasmic reticulum (ER). The quality of the proteins folded in the ER is carefully monitored by an ER quality control mechanism that allows only correctly folded proteins to be transported to their final destination, and misfolded or unassembled proteins to be retained in the ER and subsequently degraded in a process termed 'ER-associated degradation' (ERAD). The ERAD pathway is conserved from yeast to mammals, and plays an essential role in the maintenance of ER homeostasis, as well as in the prevention of various diseases that arise from the accumulation of aberrant proteins in the ER. In the ERAD pathway, molecular chaperones and lectin-like proteins are involved in the identification of misfolded proteins, ER-resident reductases cleave disulfide bonds in these proteins to facilitate retrograde transport to the cytosol and AAA(+) adenosine triphosphatase withdraws them from the retrotranslocation channel to the cytosol where they are degraded by the ubiquitin/proteasome system. The possible mechanisms that underlie ERAD and the various factors involved in this process are discussed in this article.
    Journal of Biochemistry 11/2009; 147(1):19-25. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis and catalyses the pyridoxal 5'-phosphate (PLP)-dependent decarboxylative condensation reaction of l-serine with palmitoyl-CoA to generate 3-ketodihydrosphingosine. The crystal structure of SPT from Sphingobacterium multivorum GTC97 complexed with l-serine was determined at 2.3 A resolution. The electron density map showed the Schiff base formation between l-serine and PLP in the crystal. Because of the hydrogen bond formation with His138, the orientation of the Calpha-H bond of the PLP-l-serine aldimine was not perpendicular to the PLP-Schiff base plane. This conformation is unfavourable for the alpha-proton abstraction by Lys244 and the reaction is expected to stop at the PLP-l-serine aldimine. Structural modelling of the following intermediates indicated that His138 changes its hydrogen bond partner from the carboxyl group of l-serine to the carbonyl group of palmitoyl-CoA upon the binding of palmitoyl-CoA, making the l-serine Calpha-H bond perpendicular to the PLP-Schiff base plane. These crystal and model structures well explained the observations on bacterial SPTs that the alpha-deprotonation of l-serine occurs only in the presence of palmitoyl-CoA. This study provides the structural evidence that directly supports our proposed mechanism of the substrate synergism in the SPT reaction.
    Journal of Biochemistry 07/2009; 146(4):549-62. · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane and secretory proteins cotranslationally enter and are folded in the endoplasmic reticulum (ER). Misfolded or unassembled proteins are discarded by a process known as ER-associated degradation (ERAD), which involves their retrotranslocation into the cytosol. ERAD substrates frequently contain disulfide bonds that must be cleaved before their retrotranslocation. Here, we found that an ER-resident protein ERdj5 had a reductase activity, cleaved the disulfide bonds of misfolded proteins, and accelerated ERAD through its physical and functional associations with EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and an ER-resident chaperone BiP. Thus, ERdj5 is a member of a supramolecular ERAD complex that recognizes and unfolds misfolded proteins for their efficient retrotranslocation.
    Science 07/2008; 321(5888):569-72. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of deoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We have determined the crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition.
    Journal of Molecular Biology 12/2007; 373(4):839-50. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arginine rich, mutated in early stage of tumors (ARMET) was first identified as a human gene highly mutated in a variety of cancers. However, little is known about the characteristics of the ARMET protein and its expression. We identified ARMET as a gene upregulated by endoplasmic reticulum (ER) stress. Here, we show that the mouse homologue of ARMET is an 18-kDa soluble ER protein that is mature after cleavage of a signal sequence and has four intramolecular disulfide bonds, including two in CXXC sequences. ER stress stimulated ARMET expression, and the expression patterns of ARMET mRNA and protein in mouse tissues were similar to those of Grp78, an Hsp70-family protein required for quality control of proteins in the ER. A reporter gene assay using a mouse ARMET promoter revealed that the unfolded protein response of the ARMET gene is regulated by an ERSE-II element whose sequence is identical to that of the HERP gene. ARMET is the second fully characterized ERSE-II-dependent gene and likely contributes to quality control of proteins in the ER.
    Cell Structure and Function 02/2007; 32(1):41-50. · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A single mutation (C96Y) in the Ins2 gene, which disrupts the A7-B7 disulfide bond, causes the diabetic phenotype in Akita mice. We biochemically analyzed the conformation of wild-type and Akita mutant recombinant proinsulins. Gel filtration chromatography and dynamic light scattering revealed that the apparent size of the mutant proinsulin molecules was significantly larger than that of wild-type proinsulin, even in the absence of intermolecular disulfide bonds. Titration with a hydrophobic probe, 1-anilinonaphthalene-8-sulfonate, demonstrated that the mutant proinsulin was more hydrophobic than the wild type. In addition, circular dichroism studies revealed that the conformation of the mutant proinsulin was less stable than the wild type, which is consistent with the observation that hydrophobic residues are exposed on the surface of the proinsulin molecules. Studies with antiserum against the C-peptide of proinsulin indicated that the mutant proinsulin had an immunoreactivity that was at least one-tenth weaker than wild-type proinsulin, suggesting that the C-peptide of mutant proinsulin is buried inside the aggregate of the proinsulin molecule. These findings indicate that increased hydrophobicity of mutant proinsulin facilitates aggregate formation, providing a clue to the dominant negative effect in the Akita mouse.
    Biological Chemistry 12/2005; 386(11):1077-85. · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A mutant of kanamycin nucleotidyltransferase (KNT) was previously created by directed evolution. This mutant, HTK, has 19 amino acid substitutions, which increase the thermostability by 20 degrees C. In this study, we have examined to what extent each mutation contributes to the increased stability and analyzed how the mutations affect the structure of KNT at 72 degrees C using molecular dynamics simulations. The effects of some mutations on the stability are simply additive, but those of others are cooperative. Mutations with large effects on the stability are introduced into the N-terminal domain, which appears to be less stable than the C-terminal domain. Results of the molecular dynamics simulations have indicated that the rigidity of the domain structures is increased by the mutations: at 72 degrees C, the intradomain fluctuations of HTK are decreased, and in turn, its interdomain motions are pronounced, whereas the structure of the preevolved KNT fluctuates randomly. Chemical modification experiments of cysteine residues have shown that the cysteine residues of HTK are less accessible to an SH reagent than those of the preevolved KNT. The present results suggest that the 19 mutations of HTK stabilize KNT by affecting the dynamic behavior of the structure of this enzyme without significantly changing its static overall structure.
    Biochemistry 01/2004; 42(49):14469-75. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.
    Journal of Molecular Biology 11/2003; 333(3):515-26. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP sulfurylase catalyzes the reaction of inorganic sulfate with ATP, producing adenosine-5'-phosphosulfate (APS) and pyrophosphate. A probable ATP sulfurylase (MW = 38.8 kDa) from Thermus thermophilus HB8 was overproduced in Escherichia coli and purified. It was crystallized in the presence of 5 mM APS by the batch method. The crystal was monoclinic, space group P2(1), with unit-cell parameters a = 68.8, b = 61.2, c = 128.6 A, beta = 95.4 degrees. Diffraction to better than 2.5 A resolution was obtained using synchrotron radiation at SPring-8. The asymmetric unit most probably contains two subunits (V(M) = 3.48 A(3) Da(-1)).
    Acta Crystallographica Section D Biological Crystallography 10/2003; 59(Pt 9):1645-7. · 14.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recombinant form of the CTP synthetase from Thermus thermophilus HB8 (tCTPs) was grown as colourless crystals by the hanging-drop vapour-diffusion technique using ammonium sulfate or sodium citrate as a precipitating agent. The crystals belong to space group I222, with unit-cell parameters a = 88.2, b = 118.9, c = 142.7 A, alpha = beta = gamma = 90 degrees, and are most likely to contain a monomer in the asymmetric unit with a V(M) value of 3.07 A(3) Da(-1). The crystals obtained from ammonium sulfate and sodium citrate solutions diffract X-rays to a resolution of 2.25 A using synchrotron X-ray sources and to a resolution of 2.35 A using Cu Kalpha X-rays from a rotating-anode generator.
    Acta Crystallographica Section D Biological Crystallography 04/2003; 59(Pt 3):551-3. · 14.10 Impact Factor
  • Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme 07/2002; 47(8 Suppl):1009-13.
  • Acta Crystallographica Section A - ACTA CRYSTALLOGR A. 01/2002; 58.

Publication Stats

437 Citations
125.35 Total Impact Points


  • 2007–2014
    • Kyoto University
      • • Division of Applied Life Sciences
      • • Department of Molecular and Cellular Biology
      Kioto, Kyōto, Japan
  • 2012–2013
    • Kyoto Sangyo University
      • • Department of Molecular Biosciences
      • • Faculty of Life Sciences
      Kyoto, Kyoto-fu, Japan
  • 2004
    • Osaka Medical College
      • Department of Biochemistry
      Takatuki, Ōsaka, Japan
  • 1999
    • Osaka University
      • Department of Biological Sciences
      Ōsaka-shi, Osaka-fu, Japan