J. Larsson

KTH Royal Institute of Technology, Tukholma, Stockholm, Sweden

Are you J. Larsson?

Claim your profile

Publications (27)201.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data we span a physically motivated part of the model's parameter space and create DREAM ($\textit{Dissipation with Radiative Emission as A table Model}$), a table model for ${\scriptsize XSPEC}$. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present imaging and spectroscopic observations with HST and VLT of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ~8,000 (~2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500-1000 km/s, consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ~2025.
    05/2015; 806(1). DOI:10.1088/2041-8205/806/1/L19
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of gamma-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified gamma-ray source, detected over the first four years of Fermi operation, 0.23 deg from the radio position of the NLSy1. Analysing 76 months of gamma-ray data (2008 August 4-2014 December 31) we are able to better constrain the localization of the gamma-ray source. The new position of the gamma-ray source is 0.05 deg from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This is the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in gamma-rays from FBQS J1644+2619 during 2012 July-October, and an increase of activity in V-band was detected by the Catalina Real-Time Sky Survey in the same period.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much evidence points towards that the photosphere in the relativistic outflow in GRBs plays an important role in shaping the observed MeV spectrum. However, it is unclear whether the spectrum is fully produced by the photosphere or whether a substantial part of the spectrum is added by processes far above the photosphere. Here we make a detailed study of the $\gamma-$ray emission from single pulse GRB110920A which has a spectrum that becomes extremely narrow towards the end of the burst. We show that the emission can be interpreted as Comptonisation of thermal photons by cold electrons in an unmagnetised outflow at an optical depth of $\tau \sim 20$. The electrons receive their energy by a local dissipation occurring close to the saturation radius. The main spectral component of GRB110920A and its evolution is thus, in this interpretation, fully explained by the emission from the photosphere including localised dissipation at high optical depths.
    Monthly Notices of the Royal Astronomical Society 03/2015; 450(2). DOI:10.1093/mnras/stv636 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Before the launch of the Fermi satellite only two classes of Active Galactic Nuclei (AGN) were known to generate relativistic jets and thus to emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope (LAT) on board Fermi confirmed that these two populations represent the most numerous identified sources in the extragalactic gamma-ray sky, but the discovery of variable gamma-ray emission from 5 radio-loud Narrow-Line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible emerging third class of AGN with relativistic jets. Considering that NLSy1 are thought to be hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects, the knowledge of the development of relativistic jets, and the evolution of radio-loud AGN. In this context, the study of the radio-loud NLSy1 from radio to gamma-rays has received increasing attention. Here we discuss the radio-to-gamma-rays properties of the gamma-ray emitting NLSy1, also in comparison with the blazar scenario.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new Hubble Space Telescope images of high-velocity Hα and Lyα emission in the outer debris of SN 1987 A. The Hα images are dominated by emission from hydrogen atoms crossing the reverse shock (RS). For the first time we observe emission from the RS surface well above and below the equatorial ring (ER), suggesting a bipolar or conical structure perpendicular to the ring plane. Using the Hα imaging, we measure the mass flux of hydrogen atoms crossing the RS front, in the velocity intervals (−7500 < Vobs < −2800 km s−1) and (1000 < Vobs < 7500 km s−1), = 1.2 × 10−3M yr−1. We also present the first Lyα imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyα and X-ray emission, we observe that the majority of the high-velocity Lyα emission originates interior to the ER. The observed Lyα/Hα photon ratio, ≈ 17, is significantly higher than the theoretically predicted ratio of ≈5 for neutral atoms crossing the RS front. We attribute this excess to Lyα emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyα and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyα production mechanism in SN 1987 A at this phase in its evolution.
    03/2015; 801(1):L16. DOI:10.1088/2041-8205/801/1/L16
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new {\it Hubble Space Telescope} images of high-velocity H-$\alpha$ and Lyman-$\alpha$ emission in the outer debris of SN~1987A. The H-$\alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$\alpha$ imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals ($-$7,500~$<$~$V_{obs}$~$<$~$-$2,800 km s$^{-1}$) and (1,000~$<$~$V_{obs}$~$<$~7,500 km s$^{-1}$), $\dot{M_{H}}$ = 1.2~$\times$~10$^{-3}$ M$_{\odot}$ yr$^{-1}$. We also present the first Lyman-$\alpha$ imaging of the whole remnant and new $Chandra$ X-ray observations. Comparing the spatial distribution of the Lyman-$\alpha$ and X-ray emission, we observe that the majority of the high-velocity Lyman-$\alpha$ emission originates interior to the equatorial ring. The observed Lyman-$\alpha$/H-$\alpha$ photon ratio, $\langle$$R(L\alpha / H\alpha)$$\rangle$ $\approx$~17, is significantly higher than the theoretically predicted ratio of $\approx$ 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-$\alpha$ emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-$\alpha$ and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-$\alpha$ production mechanism in SN 1987A at this phase in its evolution.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present observations by the Fermi Gamma-Ray Space Telescope Gamma-Ray Burst Monitor (GBM) of the nearby (z=0.55) GRB 101219B. This burst is a long GRB, with an associated supernova and with a blackbody component detected in the early afterglow observed by the Swift X-ray Telescope (XRT). Here we show that the prompt gamma-ray emission has a blackbody spectrum, making this the second such burst observed by Fermi GBM. The properties of the blackbody, together with the redshift and our estimate of the radiative efficiency, makes it possible to calculate the absolute values of the properties of the outflow. We obtain an initial Lorentz factor Gamma=138\pm 8, a photospheric radius r_phot=4.4\pm 1.9 \times 10^{11} cm and a launch radius r_0=2.7\pm 1.6 \times 10^{7} cm. The latter value is close to the event horizon for a stellar-mass black hole and suggests that the jet has a relatively unobstructed path through the star. There is no smooth connection between the blackbody components seen by GBM and XRT, ruling out the scenario that the late emission is due to high-latitude effects. In the interpretation that the XRT blackbody is prompt emission due to late central engine activity, the jet either has to be very wide or have a clumpy structure where the emission originates from a small patch. Other explanations for this component, such as emission from a cocoon surrounding the jet, are also possible.
    02/2015; 800(2). DOI:10.1088/2041-8205/800/2/L34
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on multifrequency observations performed during 2012 December-2013 August of the first narrow-line Seyfert 1 galaxy detected in gamma rays, PMN J0948+0022 ($z$ = 0.5846). A gamma-ray flare was observed by the Large Area Telescope on board Fermi during 2012 December-2013 January, reaching a daily peak flux in the 0.1-100 GeV energy range of (155 $\pm$ 31) $\times$10$^{-8}$ ph cm$^{-2}$ s$^{-1}$ on 2013 January 1, corresponding to an apparent isotropic luminosity of about 1.5$\times$10$^{48}$ erg s$^{-1}$. The gamma-ray flaring period triggered Swift and VERITAS observations in addition to radio and optical monitoring by OVRO, MOJAVE, and CRTS. A strong flare was observed in optical, UV, and X-rays on 2012 December 30, quasi-simultaneously to the gamma-ray flare, reaching a record flux for this source from optical to gamma rays. VERITAS observations at very high energy (E > 100 GeV) during 2013 January 6-17 resulted in an upper limit of F (> 0.2 TeV) < 4.0$\times$10$^{-12}$ ph cm$^{-2}$ s$^{-1}$. We compared the spectral energy distribution (SED) of the flaring state in 2013 January with that of an intermediate state observed in 2011. The two SEDs, modelled as synchrotron emission and an external Compton scattering of seed photons from a dust torus, can be modelled by changing both the electron distribution parameters and the magnetic field.
    Monthly Notices of the Royal Astronomical Society 10/2014; 446(3). DOI:10.1093/mnras/stu2251 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze HST and ground based observations of the luminous Type IIn SN 2010jl from 26 to 1128 days. At maximum the bolometric luminosity was 3x10^{43} erg/s and even at ~ 850 days exceeds 10^{42} erg/s. An emission excess in the NIR, dominating after 400 days, probably originates in dust in the CSM. The observed total radiated energy is at least 6.5x10^{50} ergs. The spectral lines display two distinct components, one broad, due to electron scattering, and one narrow. The broad component is initially symmetric around zero velocity, but becomes blueshifted after ~50 days. We find that dust absorption in the ejecta is unlikely to explain the line shifts, and attribute this instead to radiative acceleration by the SN radiation. From the lines, and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the circumstellar medium. The narrow line component suggests an expansion velocity of ~100 km/s for the CSM. The UV spectrum shows strong low and high ionization lines, while the optical shows a number of narrow coronal lines excited by the X-rays. From the narrow UV lines we find large N/C and N/O ratios, indicative of CNO processing in the progenitor. The luminosity evolution is consistent with a radiative shock in an r^{-2} CSM and indicates a mass loss rate of ~ 0.1 M_O/yr for a 100 km/s wind. The total mass lost is at least ~3 Msun. The mass loss rate, wind velocity, density and CNO enrichment are consistent with the SN expanding into a dense CSM characteristic of that of an LBV progenitor. Even in the last full spectrum at 850 days we do not see any indication of debris processed in a core collapse SN. We attribute this to the extremely dense CSM, which is still opaque to electron scattering. Finally, we discuss the relevance of these UV spectra for detecting Type IIn supernovae in high redshift surveys.
    The Astrophysical Journal 12/2013; 797(2). DOI:10.1088/0004-637X/797/2/118 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on radio-to-gamma-ray observations during 2011 May-September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in gamma-rays by Fermi-LAT. Strong variability was observed in gamma-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in gamma-rays. This different behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multi-cell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates above 2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonisation of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated AGNs, PMN J0948+0022 shows all characteristics of the blazar class.
    Monthly Notices of the Royal Astronomical Society 12/2013; 438(4). DOI:10.1093/mnras/stt2464 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets, in addition to blazars and radio galaxies. The existence of relativistic jets also in this subclass of Seyfert galaxies opened an unexplored research space for our knowledge of the radio-loud AGNs. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
    Proceedings of the International Astronomical Union 12/2013; 9(S304). DOI:10.1017/S1743921314003561
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).
    Experimental Astronomy 12/2013; 36(3):523-567. DOI:10.1007/s10686-013-9344-3 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
    Science 11/2013; DOI:10.1126/science.1242302 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 s is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
    Science 11/2013; · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic gamma-ray sky, but the discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
    The European Physical Journal Conferences 09/2013; 61. DOI:10.1051/epjconf/20136105006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: {\it Fermi Gamma-ray Space Telescope} observations of GRB110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at $\sim 100$ keV and a non-thermal component, which peaks at $\sim 1000$ keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from $\Gamma \sim 1000$ to $\sim 150$ (assuming a redshift $z=2$; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, $r_0$, increases by more than two orders of magnitude. Assuming a moderately magnetised outflow we estimate that $r_0$ varies from $10^6$ cm to $\sim 10^9$ cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for GRB pulses.
    Monthly Notices of the Royal Astronomical Society 05/2013; 433(4). DOI:10.1093/mnras/stt863 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present observations with VLT and HST of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 until 2012 (days 4381 -- 9100 after explosion). We detect broad lines from H-alpha, H-beta, Mg I], Na I, [O I], [Ca II] and a feature at 9220 A. We identify the latter line with Mg II 9218, 9244,most likely pumped by Ly-alpha fluorescence. H-alpha, and H-beta both have a centrally peaked component, extending to 4500 km/s and a very broad component extending to 11,000 km/s, while the other lines have only the central component. The low velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar ring collision, whereas the broad component comes from faster ejecta passing through the reverse shock. The reverse shock flux in H-alpha has increased by a factor of 4-6 from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in soft X-rays and in the optical lines from the shocked ring. The core component seen in H-alpha, [Ca II] and Mg II has experienced a similar increase, consistent with that found from HST photometry. The ring-like morphology of the ejecta is explained as a result of the X-ray illumination, depositing energy outside of the core of the ejecta. The energy deposition in the ejecta of the external X-rays illumination is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. We finally discuss evidence for dust in the ejecta from line asymmetries.
    The Astrophysical Journal 12/2012; 768(1). DOI:10.1088/0004-637X/768/1/88 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the outer hydrogen-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]/[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before ~5,000 days, to a more irregular, edge-brightened morphology thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before ~5,000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]/[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H-alpha and the [Si I]/[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor. The H-alpha emission extends to higher velocities than [Si I]/[Fe II] as expected. There is no clear symmetry axis for all the emission and we are unable to model the ejecta distribution with a simple ellipsoid model with a uniform distribution of dust. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.
    The Astrophysical Journal 12/2012; 768(1). DOI:10.1088/0004-637X/768/1/89 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for ~24.5 s (in the GBM) and had a peak flux of (5.7 ± 0.2) × 10–5 erg s–1 cm–2. The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 ± 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of –1.89 ± 0.10. The temperature of the blackbody component also decreased, starting from ~80 keV, and the decay showed a significant break after ~2 s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.
    The Astrophysical Journal Letters 09/2012; 757(2):L31. DOI:10.1088/2041-8205/757/2/L31 · 5.60 Impact Factor

Publication Stats

170 Citations
201.90 Total Impact Points

Institutions

  • 2013
    • KTH Royal Institute of Technology
      • Department of Physics
      Tukholma, Stockholm, Sweden
  • 2012
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
  • 2010–2011
    • Stockholm University
      • Department of Astronomy
      Tukholma, Stockholm, Sweden
    • University of Nevada, Las Vegas
      • Department of Physics and Astronomy
      Las Vegas, Nevada, United States