Are you Jonathan C Dunne?

Claim your profile

Publications (3)13.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The research was aimed at finding which membrane proteins of the rumen bacterium Butyrivibrio proteoclasticus are involved in the uptake of carbohydrates resulting from extracellular enzymatic degradation of hemicellulose and fructan. The proteomic analysis of cells grown with fructose or xylan as the sole substrate identified 13 membrane proteins predicted to function as carbohydrate transporters. One protein detected was the membrane component of a fructose-specific phosphoenolpyruvate:sugar phosphotransferase system believed to be involved in the fructose uptake following extracellular fructan breakdown. The other 12 proteins were all ABC transport system substrate-binding proteins, nine of which belong to functional category COG1653 that includes proteins predicted to transport oligosaccharides. Four of the SBPs were significantly upregulated in xylan grown cells, and three of these were found in polysaccharide utilisation loci where they are clustered with other genes involved in hemicellulose breakdown and metabolism. It is possible that the carbon source available regulates a wider network of genes. The information on the mechanisms used by rumen bacteria to take up carbohydrates from their environment may improve our understanding of the ruminant digestion and facilitate strategies for improved pasture and stored feed utilisation.
    Journal of proteomics 12/2011; 75(11):3138-44. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant polysaccharide-degrading rumen microbes are fundamental to the health and productivity of ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-producing anaerobic bacterium with a key role in hemicellulose degradation in the rumen. Gel-based proteomics was used to examine the growth-phase-dependent abundance patterns of secreted proteins recovered from cells grown in vitro with xylan or xylose provided as the sole supplementary carbon source. Five polysaccharidases and two carbohydrate-binding proteins (CBPs) were among 30 identified secreted proteins. The endo-1,4-β-xylanase Xyn10B was 17.5-fold more abundant in the culture medium of xylan-grown cells, which suggests it plays an important role in hemicellulose degradation. The secretion of three nonxylanolytic enzymes and two CBPs implies they augment hemicellulose degradation by hydrolysis or disruption of associated structural polysaccharides. Sixteen ATP-binding cassette (ABC) transporter substrate-binding proteins were identified, several of which had altered relative abundance levels between growth conditions, which suggests they are important for oligosaccharide uptake. This study demonstrates that B. proteoclasticus modulates the secretion of hemicellulose-degrading enzymes and ATP-dependent sugar uptake systems in response to growth substrate and supports the notion that this organism makes an important contribution to polysaccharide degradation in the rumen.
    Journal of Proteome Research 11/2011; 11(1):131-42. · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the role of rumen microbes and their enzymes in plant polysaccharide breakdown is fundamental to understanding digestion and maximising productivity in ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-forming rumen bacterium with a key role in plant polysaccharide degradation. The 4.4 Mb genome consists of 4 replicons; a chromosome, a chromid and two megaplasmids. The chromid is the smallest reported for all bacteria, and the first identified from the phylum Firmicutes. B316 devotes a large proportion of its genome to the breakdown and reassembly of complex polysaccharides and has a highly developed glycobiome when compared to other sequenced bacteria. The secretion of a range of polysaccharide-degrading enzymes which initiate the breakdown of pectin, starch and xylan, a subtilisin family protease active against plant proteins, and diverse intracellular enzymes to break down oligosaccharides constitute the degradative capability of this organism. A prominent feature of the genome is the presence of multiple gene clusters predicted to be involved in polysaccharide biosynthesis. Metabolic reconstruction reveals the absence of an identifiable gene for enolase, a conserved enzyme of the glycolytic pathway. To our knowledge this is the first report of an organism lacking an enolase. Our analysis of the B316 genome shows how one organism can contribute to the multi-organism complex that rapidly breaks down plant material in the rumen. It can be concluded that B316, and similar organisms with broad polysaccharide-degrading capability, are well suited to being early colonizers and degraders of plant polysaccharides in the rumen environment.
    PLoS ONE 08/2010; 5(8):e11942. · 3.53 Impact Factor