Jing Xie

Qingdao University, Tsingtao, Shandong Sheng, China

Are you Jing Xie?

Claim your profile

Publications (10)28.85 Total impact

  • Feng Zhong · Jing Xie · Di Zhang · Yantao Han · Chunbo Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effect of polypeptide from Chlamys farreri (PCF) on ultraviolet B (UVB) irradiation-induced apoptosis in human keratinocyte HaCaT cells. HaCaT cells were treated with 20mJ/cm(2) UVB irradiation for 18h. The cell viability was measured by MTT assay, and apoptosis was detected with Hoechst 33258 staining and caspase-3 activity detection. Protein expression levels were assessed by Western blot analysis, and the intracellular ROS levels were also measured. Our results from the MTT assay showed that UVB irradiation significantly declined the viability of HaCaT cells, which could be restored by PCF treatment. PCF decreased the apoptosis rate in HaCaT cells treated with UVB irradiation. Moreover, PCF increased the expression levels of PDI and Ero-1a, and scavenged the intracellular ROS. Furthermore, PCF inhibited the expressions of GRP78, p-PERK, p-eIF2a, and CHOP, and suppressed the ER stress-induced apoptosis, in UVB-irradiated HaCaT cells. In addition, the ROS scavenging effect of 4-PBA was less potent than PCF, indicating that ER stress-related ROS production contribute partially to the total ROS level, and ER was not the only target of PCF treatment. Our results indicate that PCF inhibits UVB irradiation-induced apoptosis through restoring ER redox homeostasis and suppressing the PERK-eIF2a-CHOP pathway. These findings provide evidence for the application of PCF in the protection of skin from UV irradiation. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of photochemistry and photobiology. B, Biology 10/2015; 151. DOI:10.1016/j.jphotobiol.2015.06.016 · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/ Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015. Published by Elsevier B.V.
    European journal of pharmacology 07/2015; 764. DOI:10.1016/j.ejphar.2015.07.008 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of polypeptide from Chlamys farreri (PCF) on ultraviolet B (UVB)-induced apoptosis in human keratinocyte HaCaT cells. In HaCaT cells at 4 h or 18 h after UVB irradiation, the cell viability was measured by MTT assay. Cellular apoptosis was detected with annexin V-FITC/PI staining by flow cytometry. The expression levels of PDI, Ero-1α, GRP78, and CHOP were assessed by Western blot analysis. Mitochondrial membrane potential (MMP) was measured by fluorescent probe JC-1. Caspase activities were detected with fluorogenic substrates. PCF alleviated cell viability loss and inhibited apoptosis in HaCaT cells after UVB irradiation. Moreover, PCF increased the expression levels of PDI and Ero-1α, which were related with the ER redox homeostasis. Furthermore, PCF treatment inhibited the expression of GRP78 at 4 h after UVB irradiation, and suppressed CHOP expression at 18 h post-irradiation, indicating that PCF could inhibit UVB-evoked ER stress in the early stage post-irradiation, and suppress the ER stress-induced apoptosis in the late stage. In addition, PCF alleviated UVB-induced MMP loss, and inhibited the activation of caspase-9/-3, in HaCaT cells after UVB irradiation. On the other hand, MMP loss and caspase-9/-3 activation could be partly blocked by the ER stress inhibitor 4-PBA. PCF inhibits UVB-induced apoptosis through restoring ER redox homeostasis, suppressing ER stress, and inhibiting ER stress-induced mitochondrial apoptosis in HaCaT cells. These findings provide evidence for the mechanism underlying UVB-induced skin damages, and support the promising role of PCF in treatment of the diseases.
    American Journal of Translational Research 01/2015; 7(5):959-66. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is considered as the most important mechanism that underlies the initiation of cancer metastasis. Here we report that the naturally existing flavonoid, hispidulin is capable of preventing human colorectal cancer cells from hypoxia-induced EMT. The treatment of the cells with hispidulin reversed the EMT-related phenotype that has the morphological changes, down-regulation of E-cadherin, and hypoxia-induced cell migration and invasion. The effect was mediated at least in part by inhibiting the mRNA and protein expressions of HIF-1α via modulation of PTEN/PI3K/Akt pathway. In addition, we found that hispidulin-mediated prevention of the E-cadherin down-regulation and cell motility involved blockade of the hypoxia-induced up-regulation of Snail, Slug and Twist. Hispidulin was also effective in increasing expression of E-cadherin mRNA in HT29 colorectal cancer xenografts implanted in the nude mice. In summary, this study showed that hispidulin can prevent EMT induced by hypoxia, the environment that commonly exists in the center of a solid tumor. Given the low toxicity of hispidulin to the healthy tissues, our study suggests that hispidulin can serve as a safe therapeutic agent for suppressing cancer metastasis.
    American Journal of Cancer Research 01/2015; 5(3):1047-61. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment.
    Experimental Cell Research 12/2014; 332(2). DOI:10.1016/j.yexcr.2014.11.021 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both oxidative stress and endoplasmic reticulum stress (ER stress) have been linked to pathogenesis of neurodegenerative diseases. Our previous study has shown that L-carnitine may function as an antioxidant to inhibit H2O2-induced oxidative stress in neuroblastoma SH-SY5Y cells. To further explore the neuroprotection of L-carnitine, here we study the effects of L-carnitine on the ER stress response in H2O2-induced SH-SY5Y cell injury. Our results showed that L-carnitine pretreatment could increase cell viability; inhibit apoptosis and ROS accumulation caused by H2O2 or tunicamycin (TM). L-carnitine suppress the endoplasmic reticulum dilation and activation of ER stress-associated proteins including Glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), JNK, Bax and Bim induced by H2O2 or TM. In addition, H2O2-induced cell apoptosis and activation of ER stress can also be attenuated by antioxidant N-acetylcysteine (NAC), CHOP siRNA and the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, our results demonstrated that H2O2 could trigger both oxidative stress and ER stress in SH-SY5Y cells, and ER stress participated in SH-SY5Y apoptosis mediated by H2O2-induced oxidative stress. CHOP/Bim or JNK/Bim-dependent ER stress singnaling pathways maybe related to the neuroprotective effects of L-carnitine against H2O2-induced apoptosis and oxidative injury.
    Neurochemistry International 12/2014; 78. DOI:10.1016/j.neuint.2014.08.009 · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.
    Cell Biochemistry and Biophysics 10/2014; 71(2). DOI:10.1007/s12013-014-0313-x · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, chemical liver injury cases increased significantly in Asian countries, and the imbalance in redox system was believed to be the main cause. Purple sweet potato anthocyanins (PSPA) have been shown to exert antioxidant activity and oxidative-stress-associated functional protein modulation through various signaling pathways, so it is considered to have the potential of liver injury preventive activity. In order to evaluate the hepatoprotective potency of PSPA according to its free radical scavenging and antioxidant effects, three acute chemical liver injury models were set up with ethanol, acetaminophen and carbon tetrachloride. PSPA at moderate and high doses obviously attenuated the tested serum biomarker levels and liver index in our experiments. Besides, one chronic liver injury model set up with carbon tetrachloride was also applied, in which PSPA was orally administrated after the liver damage had been formed. Both the serum biomarker levels and histopathological analysis showed that PSPA was able to attenuated chronic liver injury. Our experimental results demonstrated the potential of PSPA as an oral hepatoprotective agent against chemical liver injury from food plant.
    Cell biochemistry and biophysics 01/2014; 69(3). DOI:10.1007/s12013-014-9829-3 · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purple sweet potato (PSP) pigments were proved to protect murine thymocytes from (60)Co γ-ray-induced mitochondria-mediated apoptosis in our previous study. In this study, we further investigated the effect of PSP pigments on apoptosis related ROS, p53 and Bcl-2 family. Cell viability was analyzed by MTT. Apoptosis was certified by DNA ladder detection. Reactive oxygen species (ROS) were detected using 2',7',- dichlorofluorescein diacetate (DCFH-DA) probe. P53, Bcl-2 and Bax proteins were analyzed by western blot. The activities of caspase-3 and caspase-9 were determined by fluorogenic substrates detection. PSP pigments treatment prior to 4Gy (60)Co γ-ray irradiation increased the cell viability and decrease the apoptosis. In the presence of PSP pigments, ROS was scavenged and followed by a p53-depression. A shift in Bcl-2/Bax ratio towards anti-apoptosis was observed as a result of p53-depression. The activities of caspase-9 and caspase-3 were reduced by PSP pigments pretreatment. PSP pigments have a cytoprotective activity against γ radiation. The protective effect of PSP pigments may be involving ROS scavenging, p53 depression and Bcl-2/Bax modulation in a caspase-dependent mitochondrial way.
    Cellular Physiology and Biochemistry 01/2011; 28(5):865-72. DOI:10.1159/000335801 · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purple sweet potato (PSP) pigments have been widely accepted as antioxidants but their radioprotective effect still remains unclear. In this study we investigated the effect of PSP pigments on ⁶⁰Co γ-ray-induced mitochondria-mediated apoptosis in murine thymocytes. The murine thymocytes were pretreated by PSP pigments before exposure to 4 Gy ⁶⁰Co γ-rays. Flow cytometry analysis was used to measure apoptotic cells and mitochondrial membrane potential. Reactive oxygen species (ROS) were detected using 2',7',-dichlorofluorescein diacetate (DCFH-DA) probe and the activity of antioxidant enzymes was tested by biochemical assay after irradiation. Cytochrome c, caspase-3 and poly ADP-ribose polymerase (PARP) were measured by Western blotting. After treatment with PSP pigments and exposure to 4 Gy radiation the apoptosis of thymocytes was reduced and the mitochondrial transmembrane potential was maintained compared to control cells. In the presence of PSP pigments, ROS were reduced and the activities of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) were protected and in some cases increased. All the pro-apoptotic proteins (cytochrome oxidase, caspase 3 and PARP) decreased in PSP pigments pretreated thymocytes compared to irradiated cells in the absence of PSP pigments. Pre-treatment with PSP pigments significantly inhibited ⁶⁰Co γ-ray-induced mitochondria-mediated apoptosis. This radioprotective effect might be related to ROS scavenging, the enhancement of the activity of antioxidant enzymes, the maintenance of mitochondrial transmembrane potential, and the sequential inhibition of cytochrome c release and downstream caspase and PARP cleavage.
    International Journal of Radiation Biology 12/2010; 86(12):1061-9. DOI:10.3109/09553002.2010.501840 · 1.84 Impact Factor

Publication Stats

8 Citations
28.85 Total Impact Points

Institutions

  • 2011–2015
    • Qingdao University
      • Medical College
      Tsingtao, Shandong Sheng, China
  • 2010
    • Ocean University of China
      Tsingtao, Shandong Sheng, China