Jing He

Emory University, Atlanta, Georgia, United States

Are you Jing He?

Claim your profile

Publications (4)24.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inactivation of the tumor suppressor Ras-association domain family 1 isoform A (RASSF1A) due to epigenetic silencing occurs in a variety of human cancers, and still largely unknown are the regulators and mechanisms underlying RASSF1A gene promoter methylation. Herein, we report that this methylation is regulated by p53 and death-associated protein 6 (DAXX) in acute lymphoblastic leukemia (ALL). We found that p53 bound to the RASSF1A promoter, recruiting DAXX as well as DNA methyltransferase 1 (DNMT1) for DNA methylation, which subsequently resulted in inactivation of RASSF1A in wild-type p53 ALL cells. Although the presence of p53 was required for the recruitment of DAXX and DNMT1 to the RASSF1A promoter, fluctuation in p53 protein levels did not affect the rates of RASSF1A methylation. Conversely, methylation of RASSF1A promoter was critically controlled by DAXX, as the enforced overexpression of DAXX led to enhanced RASSF1A promoter methylation, whereas inhibition of DAXX reduced RASSF1A methylation. Interestingly, we found that the p53/DAXX-mediated RASSF1A methylation regulated murine double minute 2 (MDM2) protein stability in ALL. Our results reveal a novel function for p53 in the methylation of RASSF1A promoter by its interaction with DAXX. Discovery of this mechanism provides new insight into the interactions among the tumor-related factors p53, RASSF1A, DAXX, and MDM2 in cancer pathogenesis.-Zhang, H., He, J., Li, J., Tian, D., Gu, L., Zhou, M. Methylation of RASSF1A gene promoter is regulated by p53 and DAXX.
    The FASEB Journal 10/2012; 27(1). DOI:10.1096/fj.12-215491 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of vascular endothelial growth factor (VEGF) increases in cancer cells during hypoxia. Herein, we report that the MDM2 oncoprotein plays a role in hypoxia-mediated VEGF upregulation. In studying the characteristics of MDM2 and VEGF expression in neuroblastoma cells, we found that hypoxia induced significantly higher upregulation of both VEGF mRNA and protein in MDM2-positive cells than in the MDM2-negative cells, even in cells without wild-type (wt) p53. We found that hypoxia induced translocation of MDM2 from the nucleus to the cytoplasm, which was associated with increased VEGF expression. Enforcing overexpression of cytoplasmic MDM2 by transfection of the mutant MDM2/166A enhanced expression of VEGF mRNA and protein production, even without hypoxia. The results of mechanistic studies demonstrated that the C-terminal RING domain of the MDM2 protein bound to the AU-rich sequence within the 3' untranslated region (3'UTR) of VEGF mRNA; this binding increased VEGF mRNA stability and translation. In addition, knockdown of MDM2 by small interfering RNA (siRNA) in MDM2-overexpressing cancer cells resulted in inhibition of VEGF protein production, cancer cell survival, and angiogenesis. Our results suggest that MDM2 plays a p53-independent role in the regulation of VEGF, which may promote tumor growth and metastasis.
    Molecular and Cellular Biology 12/2011; 31(24):4928-37. DOI:10.1128/MCB.06085-11 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies show that the MYCN and MDM2-p53 signal pathways are mutually regulated: MYCN stimulates MDM2 and p53 transcription, whereas MDM2 stabilizes MYCN mRNA and induces its translation. Herein, we report that the interaction between MDM2 and MYCN plays a critical role in MYCN-amplified neuroblastoma tumor cell growth and survival. Distinct from the known role that MDM2 has in regulating tumor promotion in non-MYCN-amplified neuroblastoma, in which MDM2 inhibits p53, we found that MDM2 stimulated tumor growth in MYCN-amplified neuroblastoma in a p53-independent manner. In MYCN-amplified neuroblastoma cells, enforced expression of MDM2 further enhanced MYCN expression, yet no p53 inhibition was observed by MDM2 due to upregulation of MYCN that stimulated p53 transcription. Similarly, p53 expression remained unchanged in MDM2-silenced MYCN-amplified neuroblastoma cells because MDM2 inhibition resulted in a downregulation of MYCN that decreased p53 transcription, although the MDM2-mediated degradation of p53 was reduced. Also, we found that the enforced overexpression of MDM2, or conversely, the inhibition of overexpressed endogenous MDM2, led to either a remarkable increase or decrease in tumor growth, respectively, in MYCN-amplified neuroblastoma (even though no p53 function was involved). These results suggest that p53 that is reciprocally regulated by MDM2 and MYCN is dispensable for suppression of MYCN-amplified neuroblastoma, and that the direct interaction between MDM2 and MYCN may contribute significantly to MYCN-amplified neuroblastoma growth and disease progression.
    Cell cycle (Georgetown, Tex.) 09/2011; 10(17):2994-3002. DOI:10.4161/cc.10.17.17118 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Berberine, a natural product derived from a plant used in Chinese herbal medicine, is reported to exhibit anticancer effects; however, its mechanism of action is not clearly defined. Herein, we demonstrate that berberine induces apoptosis in acute lymphoblastic leukemia (ALL) cells by downregulating the MDM2 oncoprotein. The proapoptotic effects of berberine were closely associated with both the MDM2 expression levels and p53 status of a set of ALL cell lines. The most potent apoptosis was induced by berberine in ALL cells with both MDM2 overexpression and a wild-type (wt)-p53, whereas no proapoptotic effect was detected in ALL cells that were negative for MDM2 and wt-p53. In contrast to the conventional chemotherapeutic drug doxorubicin, which induces p53 activation and a subsequent upregulation of MDM2, berberine strongly induced persistent downregulation of MDM2 followed by a steady-state activation of p53. We discovered that downregulation of MDM2 in ALL cells by berberine occurred at a posttranslational level through modulation of death domain-associated protein (DAXX), which disrupted the MDM2-DAXX-HAUSP interactions and thereby promoted MDM2 self-ubiquitination and degradation. Given that MDM2-overexpressing cancer cells are commonly chemoresistant, our findings suggest that this naturally derived agent may have a highly useful role in the treatment of cancer patients with refractory disease.
    Cancer Research 10/2010; 70(23):9895-904. DOI:10.1158/0008-5472.CAN-10-1546 · 9.28 Impact Factor