J W Kijas

Pfizer Animal Health Australia, Sydney, New South Wales, Australia

Are you J W Kijas?

Claim your profile

Publications (54)236.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The extent of linkage disequilibrium (LD) between genetic loci has implications for both association studies and the accuracy of genomic prediction. To characterise the persistence of LD in diverse sheep breeds, two SNP genotyping platforms were used. First, existing SNP genotypes from 63 breeds obtained using the ovine SNP50 BeadChip (49 034 loci) were used to estimate LD decay in populations with contrasting levels of genetic diversity. Given the paucity of marker pairs separated by short physical distances on the SNP50 BeadChip, genotyping was subsequently performed for four breeds using the recently developed ovine HD BeadChip that assays approximately 600 000 SNPs with an average genomic spacing of 5 kb. This facilitated a highly accurate estimate of LD over short genomic distances (<30 kb) and revealed LD varies considerably between sheep breeds. Further, sheep appear to contain generally lower levels of LD than do other domestic species, likely a reflection of aspects of their past population history.
    Animal Genetics 07/2014; · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.
    Science 06/2014; 344(6188):1168-1173. · 31.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.
    · 2.58 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide association studies and implementation of genomic selection. The availability of high-density single nucleotide polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and explored its variation across autosomes and the X chromosome. In each breed, LD decayed rapidly and r2 was less than 0.2 for marker pairs separated by 50 kb. The LD decay curves clustered into three groups of similar LD decay that distinguished the three main cattle types. At short distances between markers (< 10 kb), taurine breeds showed higher LD (r2 = 0.45) than their indicine (r2 = 0.25) and composite (r2 = 0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller effective population size and a stronger bottleneck during breed formation. Using all SNPs on only the X chromosome, the three cattle types could still be distinguished. However for taurine breeds, the LD decay on the X chromosome was much faster and the background level much lower than for indicine breeds and composite populations. When using only SNPs that were polymorphic in all breeds, the analysis of the X chromosome mimicked that of the autosomes. The pattern of LD mirrored some aspects of the history of breed populations and showed a sharp decay with increasing physical distance between markers. We conclude that the availability of the HD chip can be used to detect association signals that remained hidden when using lower density genotyping platforms, since LD dropped below 0.2 at distances of 50 kb.
    Genetics Selection Evolution 03/2014; 46(1):22. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic information allows population relatedness to be inferred and selected genes to be identified. Single nucleotide polymorphism microarray (SNP-chip) data, a proxy for genome composition, contains patterns in allele order and proportion. These patterns can be quantified by compression efficiency (CE). In principle, the composition of an entire genome can be represented by a CE number quantifying allele representation and order. We applied a compression algorithm (DEFLATE) to genome-wide high-density SNP data from 4,155 human, 1,800 cattle, 1,222 sheep, 81 dogs and 49 mice samples. All human ethnic groups can be clustered by CE and the clusters recover phylogeography based on traditional fixation index (FST) analyses. CE analysis of other mammals results in segregation by breed or species, and is sensitive to admixture and past effective population size. This clustering is a consequence of individual patterns such as runs of homozygosity. Intriguingly, a related approach can also be used to identify genomic loci that show population-specific CE segregation. A high resolution CE 'sliding window' scan across the human genome, organised at the population level, revealed genes known to be under evolutionary pressure. These include SLC24A5 (European and Gujarati Indian skin pigmentation), HERC2 (European eye color), LCT (European and Maasai milk digestion) and EDAR (Asian hair thickness). We also identified a set of previously unidentified loci with high population-specific CE scores including the chromatin remodeler SCMH1 in Africans and EDA2R in Asians. Closer inspection reveals that these prioritised genomic regions do not correspond to simple runs of homozygosity but rather compositionally complex regions that are shared by many individuals of a given population. Unlike FST, CE analyses do not require ab initio population comparisons and are amenable to the hemizygous X chromosome. We conclude with a discussion of the implications of CE for a complex systems science view of genome evolution. CE allows one to clearly visualise the evolution of individual genomes and populations through a formal, mathematically-rigorous information space. Overall, CE makes a set of biological predictions, some of which are unique and await functional validation.
    BMC Bioinformatics 03/2014; 15(1):66. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(-39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds.
    PLoS ONE 01/2014; 9(4):e94851. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes focused on milk production have led to the development of "dairy breeds." This study investigated selective sweeps specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the potential value of selection mapping to identify genomic regions associated with dairy traits in sheep.
    PLoS ONE 01/2014; 9(5):e94623. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most published genomewide association studies (GWAS) in sheep have investigated recessively inherited monogenic traits. The objective here was to assess the feasibility of performing GWAS for a dominant trait for which the genetic basis was already known. A total of 42 Manchega and Rasa Aragonesa sheep that segregate solid black or white coat pigmentation were genotyped using the SNP50 BeadChip. Previous analysis in Manchegas demonstrated a complete association between the pigmentation trait and alleles of the MC1R gene, setting an a priori expectation for GWAS. Multiple methods were used to identify and quantify the strength of population substructure between black and white animals, before allelic association testing was performed for 49 034 SNPs. Following correction for substructure, GWAS identified the most strongly associated SNP (s26449) was also the closest to the MC1R gene. The finding was strongly supported by the permutation tree-based random forest (RF) analysis. Importantly, GWAS identified unlinked SNP with only slightly lower p-values than for s26449. Random forest analysis indicated these were false positives, suggesting interpretation based on both approaches was beneficial. The results indicate that a combined analytical approach can be successful in studies where a modest number of animals are available and substantial population stratification exists.
    Journal of Animal Breeding and Genetics 12/2013; 130(6):468-75. · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work aimed to investigate the population history and patterns of genetic diversity present within the isolated population of New Zealand Arapawa sheep. In order to identify genetic regions associated with reversion to a feral lifestyle, a selection sweep analysis was performed comparing 40 Arapawas to related breeds using Wright’s fixation index (FST). Comparisons were graphed as the moving average of 5 FST values. A threshold of 0.25 was used to identify significant regions; 8 genomic regions were identified for the Arapawa and Florida Gulf Coast Native, 9 for the Arapawa and Castellana and 3 for the Arapawa and Australian Merino breed pair comparisons. One region on chromosome 2 was identified in all three comparisons with two underlying genes, CFDP2 and NAB1. Other genes identified were RXFP2, IFT88, SLC9A3, HERC2, NIPA1, NIPA2 and DACH2. The current work confirms Arapawa sheep are an important reservoir of unique gene variants available to the New Zealand sheep industry.
    Association for the Advancement of Animal Breeding and Genetics, Napier, New Zealand; 10/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: When domesticated species are not reproductively isolated from their wild relatives, the opportunity arises for artificially selected variants to be re-introduced into the wild. However, the evolutionary consequences of introgression of domesticated genes back into the wild are poorly understood. By combining high-throughput genotyping with 25 years of long-term ecological field data, we describe the occurrence and consequences of admixture between a primitive sheep breed, the free-living Soay sheep of St Kilda, and more modern breeds. Utilizing data from a 50 K ovine SNP chip, together with forward simulations of demographic scenarios, we show that admixture occurred between Soay sheep and a more modern breed, consistent with historical accounts, approximately 150 years ago. Haplotype-sharing analyses with other breeds revealed that polymorphisms in coat colour and pattern in Soay sheep arose as a result of introgression of genetic variants favoured by artificial selection. Because the haplotypes carrying the causative mutations are known to be under natural selection in free-living Soay sheep, the admixture event created an opportunity to observe the outcome of a 'natural laboratory' experiment where ancestral and domesticated genes competed with each other. The haplotype carrying the domesticated light coat colour allele was favoured by natural selection, while the haplotype associated with the domesticated self coat pattern allele was associated with decreased survival. Therefore, we demonstrate that introgression of domesticated alleles into wild populations can provide a novel source of variation capable of generating rapid evolutionary changes.
    Molecular Ecology 06/2013; · 6.28 Impact Factor
  • Peter W Hunt, James Kijas, Aaron Ingham
    [Show abstract] [Hide abstract]
    ABSTRACT: Modern livestock breeding practices provide new opportunities for producing animals that are adapted to their production environment and are free of disease. Using current knowledge of biology and by seeking 'the desired outcome' animal selection strategies can be designed that deliver more precisely defined results so maximising genetic gain and minimising risk. This review briefly describes the evolution of genetic selection in livestock and considers some of the positive and negative aspects of selection practices over time. The selection of sheep to withstand gastro-intestinal nematode parasitism is used as an example to explain how developments in selection strategy have improved genetic progress for complex traits. Re-evaluation of the understanding of the outcomes of selection for parasite resistance is used here to examine whether a more sophisticated approach is desirable, and to propose a number of additional phenotype measurement strategies that could complement and improve the quality of information used for animal selection. Finally some ideas are presented for creating a situation where a designed, highly defined breeding objective might be used to increase precision and reduce risk. This may become possible via research to adapt or develop tools for more sophisticated phenotypic evaluation, to discover biological processes integral to desired breed changes, and to define desired animal types which match economic and societal expectations.
    The Veterinary Journal 05/2013; · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small ruminants infected with peste des petits ruminants virus exhibit lesions typical of epithelial infection and necrosis. However, the only established host receptor for this virus is the immune cell marker signaling lymphocyte activation molecule (SLAM). We have confirmed that the ovine Nectin-4 protein, when over-expressed in epithelial cells, permits efficient replication of PPRV. Furthermore, this gene was predominantly expressed in epithelial tissues and encoded by multiple haplotypes in sheep breeds from around the world.
    Journal of Virology 02/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal's health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization-time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.
    PLoS ONE 01/2013; 8(2):e55490. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.
    Nature Biotechnology 12/2012; · 32.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent availability of a genome-wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome-wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model-based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co-ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome-wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769-kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non-European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex-reversed animals, known to be associated with polledness, revealed some animals carried the wild-type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine-mapping traits in goat.
    Animal Genetics 12/2012; · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in technology facilitated development of large sets of genetic markers for many taxa, though most often model or domestic organisms. Cross-species application of genomic technologies may allow for rapid marker discovery in wild relatives of taxa with well-developed resources. We investigated returns from cross-species application of three commercially available SNP chips (the OvineSNP50, BovineSNP50 and EquineSNP50 BeadChips) as a function of divergence time between the domestic source species and wild target species. Across all three chips, we observed a consistent linear decrease in call rate (~1.5% per million years), while retention of polymorphisms showed an exponential decay. These results will allow researchers to predict the expected amplification rate and polymorphism of cross-species application for their taxa of interest, as well as provide a resource for estimating divergence times.
    Molecular Ecology Resources 09/2012; 12(6):1145-50. · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A genome scan was conducted to map the autosomal recessive lethal disorder brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Poll Merino sheep. The scan involved 10 affected and 27 unaffected animals from a single Poll Merino/Merino sheep flock, which were genotyped with the Illumina Ovine SNP50 BeadChip. Association and homozygosity mapping analyses located the disorder in a region comprising 20 consecutive SNPs spanning 1.1 Mb towards the distal end of chromosome OAR2. All affected animals and none of the unaffected animals were homozygous for the associated haplotype in this region. These results provide the basis for identifying the causative mutation(s) and should enable the development of a DNA test to identify carriers in the Poll Merino sheep population. Understanding the molecular control of BCRHS may provide insight into the fundamental genetic control and regulation of the affected organ systems.
    Animal Genetics 07/2012; · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.
    PLoS Biology 02/2012; 10(2):e1001258. · 12.69 Impact Factor

Publication Stats

787 Citations
236.18 Total Impact Points

Institutions

  • 2013
    • Pfizer Animal Health Australia
      Sydney, New South Wales, Australia
  • 2006–2012
    • Meat & Livestock Australia
      Sydney, New South Wales, Australia
    • The Commonwealth Scientific and Industrial Research Organisation
      • Division of Livestock Industries
      Canberra, Australian Capital Territory, Australia
  • 2010
    • University of Adelaide
      • School of Animal and Veterinary Sciences
      Tarndarnya, South Australia, Australia
    • University of Tasmania
      • School of Agricultural Science
      Newnham, Tasmania, Australia
  • 2007
    • Adnan Menderes University
      Güsel Hissar, Aydın, Turkey
  • 2002–2006
    • Cornell University
      • • College of Veterinary Medicine
      • • Baker Institute for Animal Health
      Ithaca, NY, United States
    • Jules Stein Eye Institute
      Maryland, United States