J I Githure

Kigali Institute of Management, Kigale, Kigali Province, Rwanda

Are you J I Githure?

Claim your profile

Publications (171)377.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The malaria parasite-resistance island (PRI) of the African mosquito vector, Anopheles gambiae, was mapped to five genomic regions containing 80 genes, using coexpression patterns of genomic blocks. High-throughput sequencing identified 347 nonsynonymous single-nucleotide polymorphisms within these genes in mosquitoes from malaria-endemic areas in Kenya. Direct association studies between nonsynonymous single-nucleotide polymorphisms and Plasmodium falciparum infection identified three naturally occurring genetic variations in each of three genes (An. gambiae adenosine deaminase, fibrinogen-related protein 30, and fibrinogen-related protein 1) that were associated significantly with parasite infection. A role for these genes in the resistance phenotype was confirmed by RNA interference knockdown assays. Silencing fibrinogen-related protein 30 increased parasite infection significantly, whereas ablation of fibrinogen-related protein 1 transcripts resulted in mosquitoes nearly free of parasites. The discovered genes and single-nucleotide polymorphisms are anticipated to be useful in the development of tools for malaria control in endemic areas in Africa.
    Proceedings of the National Academy of Sciences 12/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. METHODS: Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. RESULTS: Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90--0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. CONCLUSION: Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.
    Malaria Journal 01/2013; 12(1):13. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors.
    PLoS ONE 01/2013; 8(7):e69439. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon dioxide (CO(2)) present in exhaled air is the most important sensory cue for female blood-feeding mosquitoes, causing activation of long-distance host-seeking flight, navigation towards the vertebrate host and, in the case of Aedes aegypti, increased sensitivity to skin odours. The CO(2) detection machinery is therefore an ideal target to disrupt host seeking. Here we use electrophysiological assays to identify a volatile odorant that causes an unusual, ultra-prolonged activation of CO(2)-detecting neurons in three major disease-transmitting mosquitoes: Anopheles gambiae, Culex quinquefasciatus and A. aegypti. Importantly, ultra-prolonged activation of these neurons severely compromises their ability subsequently to detect CO(2) for several minutes. We also identify odours that strongly inhibit CO(2)-sensitive neurons as candidates for use in disruption of host-seeking behaviour, as well as an odour that evokes CO(2)-like activity and thus has potential use as a lure in trapping devices. Analysis of responses to panels of structurally related odours across the three mosquitoes and Drosophila, which have related CO(2)-receptor proteins, reveals a pattern of inhibition that is often conserved. We use video tracking in wind-tunnel experiments to demonstrate that the novel ultra-prolonged activators can completely disrupt CO(2)-mediated activation as well as source-finding behaviour in Aedes mosquitoes, even after the odour is no longer present. Lastly, semi-field studies demonstrate that use of ultra-prolonged activators disrupts CO(2)-mediated hut entry behaviour of Culex mosquitoes. The three classes of CO(2)-response-modifying odours offer powerful instruments for developing new generations of insect repellents and lures, which even in small quantities can interfere with the ability of mosquitoes to seek humans.
    Nature 06/2011; 474(7349):87-91. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Larval control is a major component in mosquito control programs. This study evaluated the wide-scale application of Bti/Bs biolarvicide (Bacillus thuringiensis var. israelensis [Bti] and Bacillus sphaericus [Bs]) in different aquatic habitats in urban and peri-urban Malindi, Kenya. This study was done from June 2006 to December 2007. The urban and peri-urban area of Malindi town was mapped and categorized in grid cells of 1 km(2). A total of 16 1-km(2) cells were selected based on presence Community Based Organization dealing with malaria control within the cells. Each of the 16 1-km(2) cells was thoroughly searched for the presence of potential larval habitats. All habitats, whether positive or negative for larvae, were treated and rechecked 24 h (1 day), 6 days, and 10 days later for the efficacy of Bti/Bs. Weekly larval sampling was done to determine the mosquito larval dynamics in the aquatic habitats during the study period. Morphological identification of the mosquito larvae showed that Anopheles gambiae s.l. Giles was the most predominant species of the Anopheles and while in the culicines, Cx. quinquefasciatus Say was the predominant species. Anopheles larvae were all eliminated in habitats within a day post-application. For culicine larvae, 38.1% (n=8) of the habitat types responded within day 1 post-treatment and all the larvae were killed, they turned negative during the days of follow-up. Another 38.1% (n=8) of the habitat types had culicine larvae but turned negative by day 6, while three habitats (14.3%) had larvae by 6th day but turned negative by 10th day. However during this Bti/Bs application studies, two habitat types, house drainage and cesspits (9.5%), remained positive during the follow-up although the mosquito larvae were significantly reduced. Both early and late instars of Anopheles larvae immediately responded to Bti/Bs application and reached 100% mortality. The early and late instars of culicine responded to the Bti/Bs application but not as fast as the Anopheles larval instars. The early instars Culex, responded with 90.8% mortality at day 1 post-treatment, and the mortality was 99.9% at day 10. Similarly, the late instars Culex followed the same trend and exhibited same mortalities. The weekly sampling in the aquatic habitats showed that there was a 36.3% mosquito larval reduction in the aquatic habitats over the 18-months study period. In conclusion, Bti/Bs biolarvicide are useful in reducing the mosquito larval densities in a wide range of habitats which have a direct impact of adult mosquito populations.
    Parasitology Research 06/2011; 108(6):1355-63. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mosquitoes (Diptera: Culicidae) are important vectors of human disease-causing pathogens. Mosquitoes are found both in rural and urban areas. Deteriorating infrastructure, poor access to health, water and sanitation services, increasing population density, and widespread poverty contribute to conditions that modify the environment, which directly influences the risk of disease within the urban and peri-urban ecosystem. The objective of this study was to evaluate the mosquito vector abundance and diversity in urban, peri-urban, and rural strata in Malindi along the Kenya coast. The study was conducted in the coastal district of Malindi between January and December 2005. Three strata were selected which were described as urban, peri-urban, and rural. Sampling was done during the wet and dry seasons. Sampling in the wet season was done in the months of April and June to cover the long rainy season and in November and December to cover the short rainy season, while the dry season was between January and March and September and October. Adult mosquito collection was done using Pyrethrum Spray Collection (PSC) and Centers for Disease Control and Prevention (CDC) light traps inside houses and specimens were identified morphologically. In the three strata (urban, peri-urban, and rural), 78.5% of the total mosquito (n = 7,775) were collected using PSC while 18.1% (n = 1,795) were collected using the CDC light traps. Using oviposition traps, mosquito eggs were collected and reared in the insectary which yielded 329 adults of which 83.8% (n = 276) were Aedes aegypti and 16.2% (n = 53) were Culex quinquefasciatus. The mosquito distribution in the three sites varied significantly in each collection site. Anopheles gambiae, Anopheles funestus and Anopheles coustani were predominant in the rural stratum while C. quinquefasciatus was mostly found in urban and peri-urban strata. However, using PSC and CDC light trap collection techniques, A. aegypti was only found in urban strata. In the three strata, mosquitoes were mainly found in high numbers during the wet season. Further, A. gambiae, C. quinquefasciatus, and A. aegypti mosquitoes were found occurring together inside the houses. This in turn exposes the inhabitants to an array of mosquito-borne diseases including malaria, bancroftian filariasis, and arboviruses (dengue fever, Yellow fever, Rift Valley fever, Chikungunya fever, and West Nile Virus). In conclusion, our findings provide useful information for the design of integrated mosquito and disease control programs in East African environments.
    Parasitology Research 05/2011; 110(1):61-71. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More focus is given to mosquito larval control due to the necessity to use several control techniques together in integrated vector management programmes. Botanical products are thought to be able to provide effective, sustainable and cheap mosquito larval control tools. However, bio-larvicides like Azadirachta indica (neem) could repel adult mosquitoes from laying their eggs in the treated larval habitats. In this study the response of Anopheles gambiae s.s. mosquitoes towards varying doses of crude aqueous neem extracts was examined. Non-choice oviposition tests were used to measure the proportion of mosquitoes laying on the first or second night, or not laying at all, when compared to the control. For each individual mosquito, the number of eggs laid and/or retained in the ovary was counted to determine the relationship between wing length and egg production. Larger female mosquitoes produced larger egg batches. The results show that at a dose of 0.1 g/l, a concentration previously found to be effective at controlling mosquito larvae, the oviposition behaviour of adult female mosquitoes was not significantly affected. The results indicate that the mosquitoes would expose progeny to this neem control tool, making the use of these simple neem wood extracts effective and potentially sustainable.
    Journal of Medicinal Plants Research. 04/2011; 5:1948-1954.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-adult stages of malaria vectors in semi-arid areas are confronted with highly variable and challenging climatic conditions. The objective of this study was to determine which larval habitat types are most productive in terms of larval densities in the dry and wet seasons within semi-arid environments, and how vector species productivity is partitioned over time. Larval habitats were mapped and larvae sampled longitudinally using standard dipping techniques. Larvae were identified to species level morphologically using taxonomic keys and to sub-species by polymerase chain reaction (PCR) methods. Physical characteristics of larval habitats, including water depth, turbidity, and presence of floating and emergent vegetation were recorded. Water depth was measured using a metal ruler. Turbidity, pH, conductivity, dissolved oxygen, temperatures salinity and total dissolved solids (TDS) were measured in the field using the hand-held water chemistry meters. Mean larval densities were higher in the dry season than during the wet season but the differences in density were not statistically significant (F = 0.04, df = 1, p = 0.8501). Significantly higher densities of larvae were collected in habitats that were shaded and holding turbid, temporary and still water. Presence of emergent or floating vegetation, habitat depth, habitat size and habitat distance to the nearest house did not significantly affect larval density in both villages. There was a weakly positive relationship between larval density and salinity (r = 0.19, p < 0.05), conductivity (r = 0.05, p = 0.45) and total dissolved solids (r = 0.17, p < 0.05). However, the relationship between water temperature and larval density was weakly negative (r = 0.15, p = 0.35). All statistical tests were significant at alpha = 0.05. Breeding of malaria vector mosquitoes in Baringo is driven by predominantly human-made and permanent breeding sites in which Anopheles arabiensis and Anopheles funestus breed at a low level throughout the year. Permanent water sources available during the dry season serve as inocula by providing "larval seed" to freshly formed rain-fed habitats during the rainy season. The highly localized and focal nature of breeding sites in these semi-desert environments provides a good opportunity for targeted larval control since the habitats are few, well-defined and easily traceable.
    Parasites & Vectors 02/2011; 4:25. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ecology of malaria vectors particularly in semi-arid areas of Africa is poorly understood. Accurate knowledge on this subject will boost current efforts to reduce the burden of malaria in sub-Saharan Africa. The objective of this study was to describe the dynamics of malaria transmission in two model semi-arid sites (Kamarimar and Tirion) in Baringo in Kenya. Adult mosquitoes were collected indoors by pyrethrum spray collections (PSC) and outdoors by Centers for Disease Control (CDC) light traps and identified to species by morphological characteristics. Sibling species of Anopheles gambiae complex were further characterized by rDNA. PCR and enzyme-linked immuno-sorbent assays (ELISA) were used to test for Plasmodium falciparum circumsporozoite proteins and host blood meal sources respectively. Anopheles arabiensis was not only the most dominant mosquito species in both study sites but also the only sibling species of An. gambiae s.l. present in the area. Other species identified in the study area were Anopheles funestus, Anopheles pharoensis and Anopheles coustani. For Kamarimar but not Tirion, the human blood index (HBI) for light trap samples was significantly higher than for PSC samples (Kamarimar, 0.63 and 0.11, Tirion, 0.48 and 0.43). The HBI for light trap samples was significantly higher in Kamarimar than in Tirion while that of PSC samples was significantly higher in Tirion than in Kamarimar. Entomological inoculation rates (EIR) were only detected for one month in Kamarimar and 3 months in Tirion. The number of houses in a homestead, number of people sleeping in the house, quality of the house, presence or absence of domestic animals, and distance to the animal shelter and the nearest larval habitat were significant predictors of An. arabiensis occurrence. Malaria transmission in the study area is seasonal with An. arabiensis as the dominant vector. The fact this species feeds readily on humans and domestic animals suggest that zooprophylaxis may be a plausible malaria control strategy in semi-arid areas of Africa. The results also suggest that certain household characteristics may increase the risk of malaria transmission.
    Malaria Journal 01/2011; 10:121. · 3.49 Impact Factor
  • International Journal of Remote Sensing 12/2010; · 1.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the tropics, Anopheles mosquito abundance is greatest during the wet season and decline significantly during the dry season as larval habitats shrink. Population size fluctuations between wet and dry seasons may lead to variation in distribution of specific alleles within natural Anopheles populations, and a possible effect on the population genetic structure. We used 11 microsatellite markers to examine the effect of seasonality on population genetic structure of Anopheles gambiae s.s. at two sites along the Kenyan coast. All loci were highly polymorphic with the total number of alleles for pooled samples ranging from 7 (locus ND36) to 21 (locus AG2H46). Significant estimates of genetic differentiation between sites and seasons were observed suggesting the existence of spatio-temporal subpopulation structuring. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. These findings suggest that along the Kenyan coast, seasonality and site specific ecological factors can alter the genetic structure of A. gambiae s.s. populations.
    Acta tropica 05/2010; 114(2):103-8. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies were conducted to examine the population genetic structure of Anopheles arabiensis (Patton) in Mwea Rice Irrigation Scheme and surrounding areas in Central Kenya, under different agricultural systems. This study was motivated by observed differences in malaria transmission indices of An. arabiensis within the scheme compared with adjacent nonirrigated areas. Agricultural practices can modify local microclimate and influence the number and diversity of larval habitats and in so doing may occasion subpopulation differentiation. Thirty samples from each of the three study sites were genotyped at eight microsatellite loci. Seven microsatellite loci showed high polymorphism but revealed no genetic differentiation (FST = 0.006, P = 0.312) and high gene flow (Nm = 29-101) among the three populations. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. There was high frequency of rare alleles, suggesting that An. arabiensis in the study area has a high potential of responding to selective pressures from environmental changes and vector control efforts. These findings imply that An. arabiensis in the study area occurs as a single, continuous panmictic population with great ability to adapt to human-imposed selective pressures.
    Journal of Medical Entomology 03/2010; 47(2):144-51. · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for 'clean' water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl(2)), copper [as copper II nitrate hydrate, Cu(NO(3))(2) 2.5 H(2)O] and lead [as lead II nitrate, Pb(NO(3))(2)], monitored by changes in LC(50) concentrations of the metals, changed from 6.07 microg/L, 12.42 microg/L and 493.32 microg/L to 4.45 microg/L, 25.02 microg/L and 516.69 microg/L, respectively, after three generations of exposure. The metal-selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal-selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.
    Medical and Veterinary Entomology 03/2010; 24(2):101-7. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae.
    PLoS ONE 01/2010; 5(10):e13359. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.
    Malaria Journal 01/2010; 9:228. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal-responsive metallothionein and alpha-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC(30) through five successive generations. Expression levels were determined in the 5th generation by semi-quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F(3,11)=4.574, P=0.038) and alpha-tubulin (F(3,11)=12.961, P=0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P=0.012), and in cadmium than in lead treatments (P=0.044). Expressions of alpha-tubulin were significantly higher in cadmium than in control treatments (P=0.008). These results demonstrate the capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal-responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated.
    Ecotoxicology and Environmental Safety 10/2009; 73(1):46-50. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4 was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity.
    Malaria Journal 09/2009; 8:216. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies were conducted to determine the role of sibling species of Anopheles funestus complex in malaria transmission in three agro-ecosystems in central Kenya. Mosquitoes were sampled indoors and outdoors, and rDNA PCR was successfully used to identify 340 specimens. Anopheles parensis (91.8%), A. funestus (6.8%), and Anopheles leesoni (1.5%) were the three sibling species identified. A. parensis was the dominant species at all study sites, while 22 of 23 A. funestus were collected in the non-irrigated study site. None of the 362 specimens tested was positive for Plasmodium falciparum circumsporozoite proteins by enzyme-linked immunosorbent assay. The most common blood-meal sources (mixed blood meals included) for A. parensis were goat (54.0%), human (47.6%), and bovine (39.7%), while the few A. funestus s.s. samples had fed mostly on humans. The human blood index (HBI) for A. parensis (mixed blood meals included) in the non-irrigated agro-ecosystem was 0.93 and significantly higher than 0.33 in planned rice agro-ecosystem. The few samples of A. funestus s.s. and A. funestus s.l. also showed a trend of higher HBI in the non-irrigated agro-ecosystem. We conclude that agricultural practices have significant influence on distribution and blood feeding behavior of A. funestus complex. Although none of the species was implicated with malaria transmission, these results may partly explain why non-irrigated agro-ecosystems are associated with higher risk of malaria transmission by this species compared to irrigated agro-ecosystems.
    Parasitology Research 07/2009; 105(4):1041-6. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Use of insecticide-treated nets (ITNs) continues to offer potential strategy for malaria prevention in endemic areas. However their effectiveness, sustainability and massive scale up remain a factor of socio-economic and cultural variables of the local community which are indispensable during design and implementation stages. An ethnographic household survey was conducted in four study villages which were purposefully selected to represent socio-economic and geographical diversity. In total, 400 households were randomly selected from the four study villages. Quantitative and qualitative information of the respondents were collected by use of semi-structured questionnaires and focus group discussions. Malaria was reported the most frequently occurring disease in the area (93%) and its aetiology was attributed to other non-biomedical causes like stagnant water (16%), and long rains (13%). Factors which significantly caused variation in bed net use were occupant relationship to household head (chi2 = 105.705; df 14; P = 0.000), Age (chi2 = 74.483; df 14; P = 0.000), village (chi2 = 150.325; df 6; P = 0.000), occupation (chi2 = 7.955; df 3; P = 0.047), gender (chi2 = 4.254; df 1; P = 0.039) and education levels of the household head or spouse (chi2 = 33.622; df 6; P = 0.000). The same variables determined access and conditions of bed nets at household level. Protection against mosquito bite (95%) was the main reason cited for using bed nets in most households while protection against malaria came second (54%). Colour, shape and affordability were some of the key potential factors which determined choice, use and acceptance of bed nets in the study area. The study highlights potential social and economic variables important for effective and sustainable implementation of bed nets-related programmes in Sub-Saharan Africa.
    Malaria Journal 05/2009; 8:64. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy and persistence of 2 bacterial larvicides, Vectobac-DT (Bacillus thuringiensis israelensis [Bti]) and CulinexCombi (Bti and Bacillus sphaericus [Bs]), were tested against Anopheles gambiae and Culex quinquefasciatus in temporarily unused swimming pools with rainwater in Malindi, Kenya. Pre- and posttreatment larval densities were recorded by sampling with the standard WHO dipping technique for 8 consecutive days. The larvicides were applied to the pools with a knapsack sprayer. The data showed that Vectobac-DT was highly effective against early instars of An. gambiae with 89% reduction within 24 h but not as effective against the early stages of Cx. quinquefasciatus with reduction of only 46%. CulinexCombi resulted in high mortalities to early instars of both species with over 97% reduction within 24 h, but showed a drastic reduction 48 h after application. Both Vectobac-DT and CulinexCombi were highly effective against late instars of both species, whereby Vectobac-DT persisted much longer than CulinexCombi. Anopheles gambiae was found to be more susceptible to both larvicides than Cx. quinquefasciatus. By their high efficacy and good persistence against mosquito larvae, both Vectobac-DT and CulinexCombi can be recommended for use in integrated mosquito control programs.
    Journal of the American Mosquito Control Association 01/2009; 24(4):538-42. · 0.76 Impact Factor

Publication Stats

3k Citations
377.29 Total Impact Points

Institutions

  • 2013
    • Kigali Institute of Management
      Kigale, Kigali Province, Rwanda
  • 2006–2013
    • University of California, Irvine
      • • Department of Molecular Biology and Biochemistry
      • • College of Health Sciences
      Irvine, California, United States
    • KEMRI-Wellcome Trust Research Programme
      Kilifi, Kilifi, Kenya
  • 2008–2011
    • African Insect Science for Food and Health
      Nairoba, Nairobi Area, Kenya
  • 2009–2010
    • Egerton University
      • Department of Biochemistry and Molecular Biology
      Nakuru, Rift Valley Province, Kenya
    • University of Alabama at Birmingham
      • Department of Medicine
      Birmingham, AL, United States
  • 1984–2010
    • Kenya Medical Research Institute
      • • Centre for Global Health Research
      • • Centre for Clinical Research
      Nairoba, Nairobi Area, Kenya
  • 2003–2008
    • University of Miami
      • Department of Epidemiology and Public Health
      Coral Gables, FL, United States
    • Addis Ababa University
      • Aklilu Lema Institute of Pathobiology
      Addis Ababa, Adis Abeba Astedader, Ethiopia
  • 2007
    • Jomo Kenyatta University of Agriculture and Technology
      Nairoba, Nairobi Area, Kenya
    • University of Illinois, Urbana-Champaign
      Urbana, Illinois, United States
  • 2004–2007
    • University of Miami Miller School of Medicine
      • Department of Epidemiology and Public Health
      Miami, Florida, United States
  • 2005
    • The University of Edinburgh
      • Institute of Cell Biology
      Edinburgh, SCT, United Kingdom
  • 1999–2003
    • Tulane University
      • Department of Tropical Medicine
      New Orleans, LA, United States
  • 2001
    • University at Buffalo, The State University of New York
      • Department of Biological Sciences
      Buffalo, NY, United States
  • 1985–1997
    • US Army Medical Research Unit Kenya
      Nairoba, Nairobi Area, Kenya
  • 1996
    • Moi University
      Nairoba, Nairobi Area, Kenya
  • 1992
    • Rigshospitalet
      • Department of Infectious Diseases
      Copenhagen, Capital Region, Denmark