Hubert Messner

University of Innsbruck, Innsbruck, Tyrol, Austria

Are you Hubert Messner?

Claim your profile

Publications (6)16.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute mountain sickness (AMS) is a common condition among non-acclimatized individuals ascending to high altitude. However, the underlying mechanisms causing the symptoms of AMS are still unknown. It has been suggested that AMS is a mild form of high-altitude cerebral edema both sharing a common pathophysiological mechanism. We hypothesized that brain swelling and consequently AMS development is more pronounced when subjects exercise in hypoxia compared to resting conditions. Twenty males were studied before and after an eight hour passive (PHE) and active (plus exercise) hypoxic exposure (AHE) (F(i)O(2) = 11.0%, P(i)O(2)∼80 mmHg). Cerebral edema formation was investigated with a 1.5 Tesla magnetic resonance scanner and analyzed by voxel based morphometry (VBM), AMS was assessed using the Lake Louise Score. During PHE and AHE AMS was diagnosed in 50% and 70% of participants, respectively (p>0.05). While PHE slightly increased gray and white matter volume and the apparent diffusion coefficient, these changes were clearly more pronounced during AHE but were unrelated to AMS. In conclusion, our findings indicate that rest and especially exercise in normobaric hypoxia are associated with accumulation of water in the extracellular space, however independent of AMS development. Thus, it is suggested that AMS and HACE do not share a common pathophysiological mechanism.
    PLoS ONE 01/2012; 7(11):e50334. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training "specificity" hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (Fi(O(2))) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (VO(2max)) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ET(N)) and strength training normoxia group (ST(N)); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ET(H)) and strength training hypoxia group (ST(H)); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ET(N) (P < 0.01), with the same trend in ET(H) and ST(H) (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.
    AJP Regulatory Integrative and Comparative Physiology 07/2011; 301(4):R1078-87. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first part of this article deals with the concept of Mild Cognitive Impairment and its role in the pathogenesis of dementia. In the second part neuroradiologic diagnostic methods which can potentially help to predict the conversion of MCI to Alzheimer s disease (DAT) are discussed. We reviewed in PubMed published literature for reports which investigated diagnosis and progress of patients with MCI and DAT. Patients with MCI older than 65 years have a risk of 10-15%/year to develop dementia in comparison to the healthy population with a risk of 2%/year. Neuroradiologic methods such as MR-spectroscopy, FDGPET, DWI and VBM are able to differentiate patients who will convert to DAT from patients who remain stable. Structural changes can be detected prior to clinically measurable cognitive deficits. The neuroradiologic examination using MR- Spectroscopy, VBM, DWI or FDG-PET show early structural and functional changes which can predict a conversion from MCI to DAT.
    Neuropsychiatrie: Klinik, Diagnostik, Therapie und Rehabilitation: Organ der Gesellschaft Österreichischer Nervenärzte und Psychiater 01/2010; 24(2):88-98. · 1.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the relationship between the atherosclerotic lesion load determined on magnetic resonance angiography (MRA) and phosphocreatine (PCr) kinetics during incremental, exhaustive calf exercise in patients with bilateral, symptomatic peripheral arterial disease (PAD). Using a 1.5 Tesla MR scanner, 26 patients with bilateral symptomatic PAD and 24 healthy male controls underwent serial phosphorus-31 MR spectroscopy (31P MRS) during incremental exercise at 2, 3, 4, and 5 Watts. For each increment and recovery, PCr time constants, amplitudes of PCr changes and pH values were calculated from the MR spectra. In patients, the run-off resistance (ROR) was determined on MRA. The patients exhibited significantly (p <or= 0.002) increased PCr time constants at the first (36.7, 13.8-360.3 vs. 22.9, 9.2-60.7 s), at the second (68.1, 4.2-757.2 vs. 18.3, 5.2-57.6 s), at the third (65.3, 14.7-277.7 vs. 29.0, 4.48-97.2 s), the fourth increment (64.1, 34.2-548.8 vs. 34.6, 4.9-106.2 s), and during recovery (53.2, 11.1-353.2 vs. 41.4, 15.1-122.4 s) compared to the normal controls. The PCr on-kinetics during the increments correlated significantly with the pH levels (r= -0.39 to -0.66, p <or= 0.005) at the end of the corresponding increments, but not with the RORs. The correlation between PCr on-kinetics and end-increment pH values might indicate remodelling processes within the muscle that probably affect mitochondrial performance, diffusion of oxygen, and muscle fiber distribution. These parameters could be improved by exercise training.
    Molecular Imaging & Biology 01/2008; 10(1):30-9. · 3.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is known that the relevance of a peripheral stenosis for muscle function increases with exercise. Our intention was to investigate the impact of a moderate cuff stenosis (CS) at 120 mmHg of the superficial femoral artery on high-energy phosphate (HEP) metabolism during isotonic, incremental calf exercise. Serial phosphorus 31 magnetic resonance spectroscopy (31P MRS) and velocity-encoded phase-contrast MR imaging (VEPC MRI) were carried out in each leg of ten healthy male volunteers. Each leg underwent four increments of calf exercise (2, 3, 4 and 5 W) followed by recovery during separate exercise sessions with and without a CS at 120 mmHg. The serial 31P MRS measurements had a time resolution of 10 s. VEPC MRI was performed at the end of each increment during separate sessions. During all increments, we detected significant differences (P < 0.05) in the phosphocreatine (PCr) time constants and the amount of PCr hydrolysis between the sessions without and with CS. Regarding the time courses of the PCr, inorganic phosphate (Pi) and pH level, we observed significant differences (P < 0.002) during exercise and recovery. During both conditions, the end-increment PCr levels as well as blood flow correlated significantly with the mechanical power. The PCr time constants during exercise significantly correlated with the intramuscular pH, but not with blood flow or mechanical power. However, the PCr recovery time constants correlated significantly with blood flow and end-exercise pH. Our study shows that reduction of blood flow due to a peripheral stenosis results in a prolongation of PCr time constants, decreased PCr and pH level as well as increased Pi level during exercise. We believe that 31P MRS during incremental exercise might provide additional information for assessing the relevance of a peripheral stenosis and its impact on muscle function.
    Arbeitsphysiologie 04/2007; 99(5):519-31. · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The treadmill exercise test is the most important examination of the functional ability of patients with intermittent claudication or leg pain during exercise, but it does not provide any metabolic information in the calf muscle. The purpose of this study was to investigate the high-energy metabolism in the calf muscle during incremental progressive plantar flexion exercise of a selected peripheral arterial disease (PAD) patient group. Using a 1.5-T whole-body magnetic resonance scanner, 17 male patients with PAD who had 1 symptomatic and 1 asymptomatic leg and 9 healthy male controls underwent serial phosphor 31 (31P) magnetic resonance spectroscopy during incremental exercise at 2, 3, 4, and 5 W. Furthermore, magnetic resonance angiography was performed, and the ankle-brachial pressure index was determined in the patient group. The runoff resistance (ROR) was separately assessed in each patient's leg. The symptomatic legs exhibited significantly increased phosphocreatine (PCr) time constants during the first three workload increments (2-4 W) and the recovery phase compared with the asymptomatic legs and the normal controls. Only two symptomatic legs reached the last increment at 5 W. Compared with the normal controls, the asymptomatic legs showed significantly increased PCr time constants only at 5 W. In the patient group, we detected significant correlations between the PCr time constants and the ROR, as well as the ankle-brachial pressure index. Moreover, the symptomatic legs presented significantly lower PCr levels and pH values at the end of exercise compared with the asymptomatic and control legs. Our study shows that muscle function in PAD patients can be objectively quantified with the help of 31P magnetic resonance spectroscopy and correlates significantly with hemodynamic parameters such as ROR and ankle-brachial pressure index. Consequently, 31P magnetic resonance spectroscopy seems to be a useful method to monitor the muscle function of PAD patients for evaluation of established therapies or new therapeutic strategies during research trials.
    Journal of Vascular Surgery 06/2006; 43(5):978-86. · 2.88 Impact Factor