Haitao Li

Fourth Military Medical University, Xi’an, Liaoning, China

Are you Haitao Li?

Claim your profile

Publications (4)12.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Botulinum neurotoxins (BoNTs) are the most poisonous substances ever known. The early detection of these toxins could bear more time for appropriate medical intervention. The standard method for detecting BoNTs is the mouse bioassay, which is time consuming (up to 4 days) and requires a large number of laboratory animals. The immunologic detection methods could detect the toxins within a day, but most of these methods are less sensitive compared with the mouse bioassay due to the lack of high-affinity antibodies. Recently, the recombinant H(C) subunit of botulinum neurotoxin type A (rAH(C)) was expressed as an effective vaccine against botulism, indicating that the rAH(C) could be an effective immunogen that raises the monoclonal antibody (mAb) for detecting BoNT/A. After immunized BALB/c mice with rAH(C), 56 mAbs were generated. Two of these mAbs were selected to establish a highly sensitive sandwich chemiluminescence enzyme immunoassay (CLEIA), in which FMMU-BTA-49 and FMMU-BTA-22 were used as capture antibody and detection antibody, respectively. The calculated limit of detection (LOD) based on molecular weight of rAH(C) and BoNT/A reached 0.45 pg mL(-1). This CLEIA can be used in the detection of BoNT/A in matrices such as milk and beef extract. This method has 20-40 fold lower LOD than that of the mouse bioassay and takes only 3 h to complete the detection, indicating that it can be used as a valuable method to detect and quantify BoNT/A.
    Analytica chimica acta 07/2012; 735:23-30. · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A number of strategies have been used to improve the efficacy of the DNA vaccine for the treatment of tumors. These strategies, ranging from activating CD4+ T cell, manipulating antigen presentation and/or processing to anti-angiogenesis, focus on one certain aspect in the functioning of the vaccine. Therefore, their combination is necessary for rational DNA vaccines design by synergizing different regimens and overcoming the limitations of each strategy. A DNA fragment (HSV) encoding the C terminal 37 amino acids of human chorionic gonadotropin β chain (hCGβ), 5 different HLA-restricted cytotoxic T lymphocyte epitopes from human survivin and the third and fourth extracellular domains of vascular endothelial growth factor receptor 2 (VEGFR2) was inserted into the sequence between the luminal and transmembrane domain of human lysosome-associated membrane protein-1 cDNA for the construction of a novel DNA vaccine. This novel vaccine, named p-L/HSV, has a potent antitumor effect on the LL/2 lung carcinoma model in syngeneic C57BL/6 mice. The immunologic mechanism involved in the antitumor effect referred to the activation of both cellular and humoral immune response. In addition, the tumor vasculature was abrogated as observed by immunohistochemistry in p-L/HSV immunized mice. Furthermore, the immunized mice received an additional boost with p-L/HSV 6 months later and showed a strong immune recall response. The present study indicates that the strategies of combining antitumor with antiangiogenesis and targeting the tumor antigen to the major histocompatibility complex class II pathway cooperate well. Such a study may shed new light on designing vaccine for cancer in the future.
    The Journal of Gene Medicine 03/2012; 14(5):353-62. · 1.95 Impact Factor
  • Fei Liu, Haitao Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract-Non-binary low-density parity-check (NB-LDPC) codes can achieve better error-correcting performance than binary LDPC codes when the code length is moderate. In this paper, we give the different initial step for different modulation and present a hardware implementation of the extended min-sum (EMS) decoding algorithm for non-binary LDPC codes. Moreover, an FPGA simulation over GF(16) is given to demonstrate the efficiency of the presented techniques.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly specific and sensitive microplate chemiluminescent enzyme immunoassay (CLEIA) was established and validated for the detection of staphylococcal enterotoxin B (SEB). A pair of monoclonal antibodies (mAbs) that recognizes different epitopes of SEB was selected from 20 SEB-specific mAbs, and the experimental conditions were examined and optimized for the development of the CLEIA. This method exhibited high performance with a dynamic range of 0.01-5 ng/mL, and the measured limit of detection (LOD) was 0.01 ng/mL. Intra- and interassay coefficient variations were all lower than 13% at three concentrations (0.2, 0.4, and 2 ng/mL). For specificity studies, when this method was applied to test staphylococcal enterotoxins A, C1, and D, no cross-reactivity was observed. It has been successfully applied to the analysis of SEB in a variety of environmental, biological and humoral matrices such as sewage, tap water, river water, roast beef, peanut butter, cured ham, 10% nonfat dry milk, milk, orange juice, and human urine and serum. The aim of this article is to show that the highly sensitive, specific, and simple microplate CLEIA, based on a pair of highly specific monoclonal antibodies, has potential applications for quantifying SEB in public health and military reconnaissance.
    Analytical Chemistry 09/2010; 82(18):7758-65. · 5.83 Impact Factor