Susana Wofchuk

Universidade Federal do Rio Grande do Sul, Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil

Are you Susana Wofchuk?

Claim your profile

Publications (62)161.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of physical exercise on the effects elicited by homocysteine on glutamate uptake and some parameters of oxidative stress, namely thiobarbituric acid-reactive substances, 2',7'-dichlorofluorescein (H(2)DCF) oxidation, as well as enzymatic antioxidant activities, superoxide dismutase, catalase and glutathione peroxidase in rat cerebral cortex were investigated. Wistar rats received subcutaneous administration of homocysteine or saline (control) from the 6th to 29th day of life. The physical exercise was performed from the 30th to 60th day of life; 12 h after the last exercise session animals were sacrificed and the cerebral cortex was dissected out. It is shown that homocysteine reduces glutamate uptake increases thiobarbituric acid-reactive substances and disrupts enzymatic antioxidant defenses in cerebral cortex. Physical activity reversed the homocysteine effects on glutamate uptake and on antioxidant enzymes activities; although the increase in thiobarbituric acid-reactive substances was only partially reversed by exercise. These findings allow us to suggest that physical exercise may have a protective role against homocysteine-induced oxidative imbalance and brain damage to the glutamatergic system.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 04/2012; 30(2):69-74. DOI:10.1016/j.ijdevneu.2012.01.001 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An observational study was carried out with students from two high schools in the city of Porto Alegre (RS), Brazil. Data were obtained through objective questionnaires in the classroom, after authorization by the institution and teachers, and after the signing of an informed consent forms by students´ parents. Most students participating in this study reported the use of drugs, mainly prescribed by health professionals and with knowledge of the family. In general, they did not know if these drugs could cause some trouble. Drug advertisements on television were seen by almost all the students, who reported little or no trust in the scientific aspects described in these ads. However, 30% reported that advertising influenced the use of medications. This study indicates the need for programs aimed at raising awareness about the negative aspects of drug use. These programs could address young people, schools, families, the health teams and the media (especially television).
    Ciência & Educação (Bauru) 12/2011; 18(1):215-230. DOI:10.1590/S1516-73132012000100013
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na(+), K(+)-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na(+), K(+)-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.
    Neurochemical Research 09/2011; 37(1):205-13. DOI:10.1007/s11064-011-0604-1 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scientific activity in Brazil has experienced an accelerated growth in the past decades, with an increase in productivity that greatly surpasses the international average. This growth has occurred mostly at the expense of centers of excellence in public universities, which account for the vast majority of the country's scientific output. The aim of this study was to evaluate the production of the Department of Biochemistry of a large public university in southern Brazil (Universidade Federal do Rio Grande do Sul), as well as to identify internal and external policies that have influenced this growing production profile. We have performed a historical analysis of the scientific output of this Department of Biochemistry, which accounts for a considerable share of the indexed scientific production at this university. By focusing on the temporal course of its growth and drawing correlations between scientific output and important events in the history of the Department of Biochemistry and of the Brazilian science policies, we concluded that internal factors (as the creation of a postgraduation program, collaboration among researchers, experienced abroad researchers, qualification of faculty members) and external factors (as investments in the postgraduate education, the establishment of national scientific policies, such as financial stimuli for productive researchers and evaluation systems) influence scientific productivity in Brazil.
    Anais da Academia Brasileira de Ciências 09/2011; 83(3):1121-30. DOI:10.1590/S0001-37652011005000011 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to evaluate the effects of chronic variate stress and lithium treatment on glutamatergic activity and neuronal vulnerability of rat hippocampus. Male Wistar rats were simultaneously treated with lithium and submitted to a chronic variate stress protocol during 40 days, and afterwards the hippocampal glutamatergic uptake and release, measured in slices and synaptosomes, were evaluated. We observed an increased synaptosomal [(3)H]glutamate uptake and an increase in [(3)H]glutamate stimulated release in hippocampus of lithium-treated rats. Chronic stress increased basal [(3)H]glutamate release by synaptosomes, and decreased [(3)H]glutamate uptake in hippocampal slices. When evaluating cellular vulnerability, both stress and lithium increased cellular death after oxygen and glucose deprivation (OGD). We suggest that the manipulation of glutamatergic activity induced by stress may be in part responsible for the neuroendangerment observed after stress exposure, and that, in spite of the described neuroprotective effects of lithium, it increased the neuronal vulnerability after OGD.
    Neurochemical Research 05/2011; 36(5):793-800. DOI:10.1007/s11064-011-0404-7 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we investigate the effect of homocysteine on glutamate uptake, Na+,K+-ATPase, enzymatic antioxidant defenses, as well as reactive species levels in hippocampus of rats. The influence of vitamin C, a classic antioxidant, on the effects elicited by homocysteine was also tested. Results showed that chronic hyperhomocysteinemia decreased glutamate uptake and the activities of Na+,K+-ATPase, catalase and superoxide dismutase in hippocampus of rats. Reactive species levels were increased by chronic homocysteine administration. Concomitant administration of vitamin C significantly prevented these alterations caused by homocysteine. According to our results, it seems possible to suggest that the reduction in glutamate uptake and Na+,K+-ATPase activity may be mediated by oxidative stress, since vitamin C prevented these effects. We suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diet in homocystinuria.
    Metabolic Brain Disease 02/2011; 26(1):61-7. DOI:10.1007/s11011-011-9232-3 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Status epilepticus-induced hippocampal neuronal loss is mainly associated with excitotoxicity induced by increased levels of extracellular glutamate which is normally neutralized by high-affinity uptake mechanism. The energy source for the glutamate uptake is the electrochemical Na(+) gradient maintained by Na(+)/K(+) ATPase pump. In this study, we investigated the effect of early-life-induced status epilepticus on hippocampal Na(+)/K(+) ATPase activity and glutamate uptake. Rat pups 15 days old were injected i.p. with LiCl (3 mEq/kg) 12-18 h prior to s.c. pilocarpine administration (60 mg/kg). Hippocampal Na(+)/K(+) ATPase activity and glutamate uptake were evaluated 1.5, 12 and 24 h after SE induction. LiCl-pilocarpine-induced SE decreased Na(+)/K(+) ATPase activity and glutamate uptake by 42 and 38%, respectively, 1.5 h after SE induction. However, 12 and 24 h after SE induction the pump activity and glutamate uptake returned to control levels. SE early in life increased hippocampal number of degenerating neurons in the CA1 subfield and dentate gyrus 24 h after SE induction. In conclusion, SE induced early in life causes short-term disruption in hippocampal Na(+)/K(+) ATPase activity and glutamate uptake, which may be related to neuronal death found in CA1 subfield.
    Brain research 10/2010; 1369:167-72. DOI:10.1016/j.brainres.2010.10.081 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of N(omega)-Nitro-L-arginine methyl ester (l-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. We observed an increase in systolic blood pressure from 115+/-12 mmHg (control group) to 152+/-18 mmHg (l-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5'TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. The general increase in ATP hydrolysis and in ecto-5'-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension.
    Life sciences 08/2010; 87(9-10):325-32. DOI:10.1016/j.lfs.2010.07.008 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Learned helplessness paradigm is a widely accepted animal model of depressive-like behavior based on stress. Glutamatergic system is closely involved with the stress-neurotoxicity in the brain and recently it is pointed to have a relevant role in the pathophysiology of depression disorder. Glutamate uptake is the main mechanism to terminate the glutamatergic physiological activity and to neuroprotection against excitotoxicity. We investigated the profile of glutamate uptake in female rats submitted to the learned helplessness paradigm and to different classes of stress related to the paradigm, in slices of brain cortex, striatum and hippocampus. Glutamate uptake in slices of hippocampus differ between learned helplessness (LH) and non-learned helplessness (NLH) animals immediately persisting up to 21 days after the paradigm. In addition, there were a decrease of glutamate uptake in the three brain structures analyzed at 21 days after the paradigm for LH animals. These results may contribute to better understand the role of the glutamatergic system on the depressive-like behavior.
    Neurochemical Research 08/2010; 35(8):1164-71. DOI:10.1007/s11064-010-0169-4 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that adenine-based purines exert multiple effects on pain transmission. However, less attention has been given to the potential effects of guanine-based purines on pain transmission. The aim of this study was to investigate the effects of intraperitoneal (i.p.) and oral (p.o.) administration of guanosine on mice pain models. Additionally, investigation into the mechanisms of action of guanosine, its potential toxicity and cerebrospinal fluid (CSF) purine levels were also assessed. Mice received an i.p. or p.o. administration of vehicle (0.1 mM NaOH) or guanosine (up to 240 mg x kg(-1)) and were evaluated in several pain models. Guanosine produced dose-dependent antinociceptive effects in the hot-plate, glutamate, capsaicin, formalin and acetic acid models, but it was ineffective in the tail-flick test. Additionally, guanosine produced a significant inhibition of biting behaviour induced by i.t. injection of glutamate, AMPA, kainate and trans-ACPD, but not against NMDA, substance P or capsaicin. The antinociceptive effects of guanosine were prevented by selective and non-selective adenosine receptor antagonists. Systemic administration of guanosine (120 mg x kg(-1)) induced an approximately sevenfold increase on CSF guanosine levels. Guanosine prevented the increase on spinal cord glutamate uptake induced by intraplantar capsaicin. This study provides new evidence on the mechanism of action of the antinociceptive effects after systemic administration of guanosine. These effects seem to be related to the modulation of adenosine A(1) and A(2A) receptors and non-NMDA glutamate receptors.
    British Journal of Pharmacology 03/2010; 159(6):1247-63. DOI:10.1111/j.1476-5381.2009.00597.x · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Essential omega-3 polyunsaturated fatty acids (omega3) are crucial to brain development and function, being relevant for behavioral performance. In the present study we examined the influence of dietary omega3 in the development of the glutamatergic system and on behavior parameters in rats. Female rats received isocaloric diets, either with omega3 (omega3 group) or a omega3 deficient diet (D group). In ontogeny experiments of their litters, hippocampal immunocontent of ionotropic NMDA and AMPA glutamatergic receptors subunits (NR2 A\B and GluR1, respectively) and the alpha isoform of the calcium-calmodulin protein kinase type II (alphaCaMKII) were evaluated. Additionally, hippocampal [(3)H]glutamate binding and uptake were assessed. Behavioral performance was evaluated when the litters were adult (60 days old), through the open-field, plus-maze, inhibitory avoidance and flinch-jump tasks. The D group showed decreased immunocontent of all proteins analyzed at 02 days of life (P2) in comparison with the omega3 group, although the difference disappeared at 21 days of life (except for alphaCaMKII, which content normalized at 60 days old). The same pattern was found for [(3)H]glutamate binding, whereas [(3)H]glutamate uptake was not affected. The D group also showed memory deficits in the inhibitory avoidance, increased in the exploratory pattern in open-field, and anxiety-like behavior in plus-maze. Taken together, our results suggest that dietary omega3 content is relevant for glutamatergic system development and for behavioral performance in adulthood. The putative correlation among the neurochemical and behavioral alterations caused by dietary omega3 deficiency is discussed.
    Neurochemistry International 02/2010; 56(6-7):753-9. DOI:10.1016/j.neuint.2010.02.010 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brazilian scientific production in Biochemistry is growing impressively fast, and Rio Grande do Sul is outstanding in that context. This study aims to outline the state's scientific research profile, given its prominent position in the national scenario. Hence, researchers, laboratories, development of human resources and investments by Foundation for the Support to Research in the State of Rio Grande do Sul (FAPERGS) were identified and mapped. We observed that amount of financial support by FAPERGS decreases in last years. Therefore, there is the necessity to reestablish some of FAPERGS's programs, as well as to increase financial support to Biochemistry departments.
    Química Nova 12/2009; 33(3):765-771. DOI:10.1590/S0100-40422010000300051 · 0.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we evaluated the effect of acute and chronic homocysteine administrations on glutamate uptake in parietal cortex of rats. The immunocontent of glial glutamate transporter (GLAST) and sodium-dependent glutamate/aspartate transporter (GLT-1) in the same cerebral structure was also investigated. For acute treatment, neonate or young rats received a single injection of homocysteine or saline (control) and were sacrificed 1, 8, 12 h, 7 or 30 days later. For chronic treatment, homocysteine was administered to rats twice a day at 8 h interval from their 6th to their 28th days old; controls and treated rats were sacrificed 12 h, 1, 7 or 30 days after the last injection. Results show that acute hyperhomocysteinemia caused a reduction on glutamate uptake in parietal cortex of neonate and young rats, and that 12h after homocysteine administration the glutamate uptake returned to normal levels in young rats, but not in neonate. Chronic hyperhomocysteinemia reduced glutamate uptake, and GLAST and GLT-1 immunocontent. According to our results, it seems reasonable to postulate that the reduction on glutamate uptake in cerebral cortex of rats caused by homocysteine may be mediated by the reduction of GLAST and GLT-1 immunocontent, leading to increased extracellular glutamate concentrations, promoting excitotoxicity.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 11/2009; 28(2):183-7. DOI:10.1016/j.ijdevneu.2009.11.004 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-affinity excitatory amino acid transporters (EAATs) regulate extracellular glutamate levels. Zebrafish (Danio rerio) provides an excellent model to study the function of different neurotransmitter systems. Although the identification of the EAAT family is well established in the mammalian central nervous system (CNS), EAAT-related genes and their expression profile in zebrafish have not yet been reported. Here we identify and describe the expression profile of EAATs-related genes and functional properties of glutamate uptake in three major brain structures from zebrafish (telencephalon, optic tectum and cerebellum). Searches on zebrafish genome databases and a phylogenetic analysis confirmed the presence of several EAAT-related genes (EAAT2, EAAT3, three EAAT1 paralogs and two EAAT5 sequences). All sequences identified were expressed in the structures analyzed. EAAT2 and EAAT3 were the most prominent glutamate transporters expressed in all brain areas. A uniform expression was observed for EAAT1A, whereas higher EAAT1B transcript levels were detected in telencephalon. Lower amounts of EAAT1C transcripts were observed in cerebellum when compared to other structures. No EAAT4-related sequence was found in the zebrafish genome. The EAAT5A expression was similar to EAAT5B in the telencephalon, while EAAT5B was less expressed than EAAT5A in optic tectum and cerebellum. Moreover, the glutamate uptake was significantly higher in optic tectum, which indicates functional differences within zebrafish brain structures. Altogether, the study of glutamate uptake in zebrafish could be important to evaluate the modulation of glutamatergic signaling through pharmacological and toxicological studies.
    Brain research bulletin 11/2009; 81(4-5):517-23. DOI:10.1016/j.brainresbull.2009.11.011 · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that adenine-based purines exert multiple effects on pain transmission. Less attention has been given, however, to the antinociceptive effects of guanine-based purines. The aim of this study was to investigate the effects of intraperitoneal administration of guanosine on a rat model of peripheral mononeuropathy. Additionally, investigation of the mechanism of action of guanosine, its general toxicity and measurements of central nervous system purine levels were performed. Rats received an intraperitoneal administration of vehicle (0.1 mM NaOH) or guanosine (up to 120 in an acute or chronic regimen. Guanosine significantly reduced thermal hyperalgesia on the ipsilateral side of the sciatic nerve ligation. Additionally, guanosine prevented locomotor deficits and body weight loss induced by the mononeuropathy. Acute systemic administration of guanosine caused an approximately 11-fold increase on central nervous system guanosine levels, but this effect was not observed after chronic treatment. Chronic guanosine administration prevented the increase on cortical glutamate uptake but not the decrease in spinal cord glutamate uptake induced by the mononeuropathy. No significant general toxicity was observed after chronic exposure to guanosine. This study provides new evidence on the mechanism of action of guanine-based purines, with guanosine presenting antinociceptive effects against a chronic pain model. PERSPECTIVE: This study provides a new role for guanosine: chronic pain modulation. Guanosine presents as a new target for future drug development and might be useful for treatment of neuropathic pain.
    The journal of pain: official journal of the American Pain Society 10/2009; 11(2):131-41. DOI:10.1016/j.jpain.2009.06.010 · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that intracerebroventricular (i.c.v.) administered guanine-based purines are antinociceptive against chemical and thermal pain models in mice. The present study was designed to further investigate the antinociceptive effects of guanosine in mice. Animals received an intrathecal (i.t.) injection of vehicle (0.1 mN NaOH) or guanosine (10 to 400 nmol). Measurements of cerebrospinal fluid (CSF) purine levels and spinal cord glutamate uptake were performed. Guanosine produced dose-dependent antinociceptive effects against tail-flick, hot-plate, intraplantar ( capsaicin, and glutamate tests. Additionally, i.t. guanosine produced significant inhibition of the biting behavior induced by i.t. injection of glutamate (175 nmol/site), AMPA (135 pmol/site), kainate (110 pmol/site), trans-ACPD (50 nmol/site), and substance P (135 ng/site), with mean ID(50) values of 140 (103-190), 136 (100-185), 162 (133-196), 266 (153-461) and 28 (3-292) nmol, respectively. However, guanosine failed to affect the nociception induced by NMDA (450 pmol/site) and capsaicin (30 ng/site). Intrathecal administration of guanosine (200 nmol) induced an approximately 120-fold increase on CSF guanosine levels. Guanosine prevented the increase on spinal cord glutamate uptake induced by capsaicin. This study provides new evidence on the mechanism of action of guanosine presenting antinociceptive effects at spinal sites. This effect seems to be at least partially associated with modulation of glutamatergic pathways by guanosine.
    European journal of pharmacology 05/2009; 613(1-3):46-53. DOI:10.1016/j.ejphar.2009.04.018 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of omega-3 polyunsaturated fatty acids (3PUFAs) on brain function is increasingly demonstrated. Here, the effect of dietary deprivation of essential 3PUFAs on some parameters related to neuroprotection was investigated. Rats were fed with two different diets: omega-3 diet and omega-3-deprived diet. To assess the influence of 3PUFAs on brain responses to ischemic insult, hippocampal slices were subjected to an oxygen and glucose deprivation (OGD) model of in vitro ischemia. The omega-3-deprived group showed higher cell damage and stronger decrease in the [(3)H]glutamate uptake after OGD. Moreover, omega-3 deprivation influenced antiapoptotic cell response after OGD, affecting GSK-3beta and ERK1/2, but not Akt, phosphorylation. Taken together, these results suggest that 3PUFAs are important for cell protection after ischemia and also seem to play an important role in the activation of antiapoptotic signaling pathways.
    The Journal of nutritional biochemistry 05/2009; 21(4):351-6. DOI:10.1016/j.jnutbio.2009.01.013 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies indicate that caloric restriction (CR) protects the central nervous system from several pathological conditions. The impairment of astroglial cell function, including glutamate uptake, glutamine synthetase (GS) activity and S100B secretion, may contribute to the progression of neurological disorders. The present study aimed to evaluate hippocampal astrocytic changes in response to CR diet, measuring astroglial parameters, such as glutamate uptake, GS activity and the immunocontent of GFAP and S100B. Blood biochemical parameters were also analyzed. Rats (60-day old) were fed ad libitum or on CR diets for 12 weeks. CR-fed rats showed approximately 16% less body weight gain than control rats. The CR diet was able to induce a significant increase in glutamate uptake (23%) and in GS activity (26%). There were no statistically significant differences in the immunocontent of either GFAP or S100B. In summary, the present study indicates that CR also modulates astrocyte functions by increasing glutamate uptake and GS activity, suggesting that CR might exert its neuroprotective effects against brain illness by modulation of astrocytic functions.
    Neuroscience Research 05/2009; 64(3):330-4. DOI:10.1016/j.neures.2009.04.004 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we characterized S100B secretion in acute hippocampal slices exposed to different concentrations of K(+) and Ca(2+) in the extracellular medium. Absence of Ca(2+) and/or low K(+) (0.2 mM KCl) caused an increase in S100B secretion, possibly by mobilization of internal stores of Ca(2+). In contrast, high K(+) (30 mM KCl) or calcium channel blockers caused a decrease in S100B secretion. This study suggests that exposure of acute hippocampal slices to low- and high-K(+) could be used as an assay to evaluate astrocyte activity by S100B secretion: positively regulated by low K(+) (possibly involving mobilization of internal stores of Ca(2+)) and negatively regulated by high-K(+) (likely secondary to influx of K(+)).
    Neurochemical Research 04/2009; 34(9):1603-11. DOI:10.1007/s11064-009-9949-0 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal cerebral hypoxia-ischemia (HI) is an important cause of mortality and neurological disabilities such as cerebral palsy, epilepsy, and mental retardation. The potential for neuroprotection in HI can be achieved mainly during the recovery period. In previous work, we demonstrated that guanosine (Guo) prevented the decrease of glutamate uptake by hippocampal slices of neonatal rats exposed to a hypoxic-ischemic (HI) insult in vivo when administrated before and after insult. In the present study, we compared the effect of Guo administration only after HI using various protocols. When compared with the control, a decrease of [(3)H] glutamate uptake was avoided only when three doses of Guo were administered immediately, 24 h and 48 h after insult, or at 3 h, 24 h, and 48 h after injury or at 6 h, 24 h, and 48 h after HI. These findings indicate that early Guo administration (until 6 h) after HI, in three doses may enhance glutamate uptake into brain slices after hypoxia/ischemia, probably resulting in decreased excitotoxicity.
    Journal of Molecular Neuroscience 11/2008; 38(2):216-9. DOI:10.1007/s12031-008-9154-7 · 2.76 Impact Factor

Publication Stats

1k Citations
161.69 Total Impact Points


  • 1999–2012
    • Universidade Federal do Rio Grande do Sul
      • • Departamento de Bioquímica
      • • Institute of Basic Sciences and Health
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 1998–2009
    • Universidade Federal de Ciências da Saúde de Porto Alegre
      Pôrto de São Francisco dos Casaes, Rio Grande do Sul, Brazil
  • 2002
    • Federal University of Rio de Janeiro
      • Departamento de Bioquímica
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 1995
    • Universidad Autónoma de Madrid
      Madrid, Madrid, Spain