H A Tucker

Purdue University, West Lafayette, Indiana, United States

Are you H A Tucker?

Claim your profile

Publications (2)5.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1 mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in herds that exceed target values for MUN when adhering to best management practices, which is consistent with the trend for differences in MUN among herds.
    Journal of Dairy Science 10/2012; · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The United States Environmental Protection Agency has identified estrogens from animal feeding operations as a major environmental concern, but few data are available to quantify the excretion of estrogenic compounds by dairy cattle. The objectives of this study were to quantify variation in estrogenic activity in feces and urine due to increased dietary inclusion of phytoestrogens. Ten Holstein heifers were assigned to 2 groups balanced for age and days pregnant; groups were randomly assigned to treatment sequence in a 2-period crossover design. Dietary treatments consisted of grass hay or red clover hay, and necessary supplements. Total collection allowed for sampling of feed refusals, feces, and urine during the last 4 d of each period. Feces and urine samples were pooled by heifer and period, and base extracts were analyzed for estrogenic activity (estrogen equivalents) using the yeast estrogen screen bioassay. Feces and urine samples collected from 5 heifers were extracted and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify excretion of 7 phytoestrogenic compounds. Excretion of 17-beta estradiol equivalents in urine was higher and tended to be higher in feces for heifers fed red clover hay (84.4 and 120.2 mg/d for feces and urine, respectively) compared with those fed grass hay (57.4 and 35.6 mg/d). Analysis by LC-MS/MS indicated greater fecal excretion of equol, genistein, daidzein, coumestrol, and formononetin by heifers fed red clover hay (1634, 29.9, 96.3, 27.8, and 163 mg/d, respectively) than heifers fed grass hay (340, 3.0, 46.2, 8.8, and 18.3 mg/d, respectively). Diet had no effect on fecal biochanin A or 2-carbethoxy-5, 7-dihydroxy-4'-methoxyisoflavone. Four phytoestrogens were detected in urine (2-carbethoxy-5, 7-dihydroxy-4'-methoxyisoflavone, daidzein, equol, and formononetin) and their excretion was not affected by diet. Identifying sources of variation in estrogenic activity of manure will aid in the development of practices to reduce environmental estrogen accumulation.
    Journal of Dairy Science 05/2010; 93(5):2088-94. · 2.57 Impact Factor

Publication Stats

1 Citation
5.13 Total Impact Points

Top Journals

Institutions

  • 2012
    • Purdue University
      • Department of Animal Sciences
      West Lafayette, Indiana, United States
  • 2010
    • Virginia Polytechnic Institute and State University
      • Department of Dairy Science
      Blacksburg, VA, United States