G. Montagnier

Pierre and Marie Curie University - Paris 6, Lutetia Parisorum, Île-de-France, France

Are you G. Montagnier?

Claim your profile

Publications (38)91.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 \pm 0.05~\mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 \pm 0.08~\mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 \pm 0.04$ and $1.09 \pm 0.04~\mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the $\textit{Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d $\pm$ 3 s and a high eccentricity of 0.772 $\pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $\pm$ 0.05 Msun and 0.70 $ \pm $ 0.07 Msun for the primary and secondary (respectively). This binary system is constrained thanks to a self-consistent modelling of the $\textit{Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations as well as the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 $ \pm $ 0.35 Mjup, and a radius of 0.94 $ \pm $ 0.12 Rjup, and thus a bulk density of 2.1 $ \pm $ 1.2 g.cm$^{-3}$. The planet has an equilibrium temperature of 511 $\pm$ 50 K, making it one of the few known membre of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aims at constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In anticipation of the VLT/SPHERE planet imager guaranteed time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 in order to identify new faint comoving companions to ultimately carry out a comprehensive analysis of the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. 12 systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected, 90% of them in 4 crowded fields. With the exception of HD8049B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD\,61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for semi-major axes of [10,2000] AU: typically less than 15% between 100 and 500 AU, and less than 10% between 50 and 500 AU for exoplanets more massive than 5 MJup and 10 MJup respectively, considering a uniform input distribution and with a confidence level of 95%.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a massive and dense transiting planet CoRoT-27b on a 3.58 day orbit around a 4.2 Gyr-old G2~star. The planet candidate was identified from the CoRoT photometry, and was confirmed as a planet with ground-based spectroscopy. The confirmation of the planet candidate is based on radial velocity observations combined with imaging to rule out blends. The characterisation of the planet and its host star is carried out using a Bayesian approach where all the data (CoRoT photometry, radial velocities, and spectroscopic characterisation of the star) are used jointly. The Bayesian analysis includes a study whether the assumption of white normally distributed noise holds for the CoRoT photometry, and whether the use of a non-normal noise distribution offers advantages in parameter estimation and model selection. CoRoT-27b has a mass of $10.39 \pm 0.55$ $\mathrm{M}_{\rm Jup}$, a radius of $1.01 \pm 0.04$ $\mathrm{R}_{\rm Jup}$, a mean density of $12.6_{-1.67}^{+1.92}$ $\mathrm{g\,cm^{-3}}$, and an effective temperature of $1500 \pm 130$~K. The planet orbits around its host star, a 4.2 Gyr-old G2-star with a mass $M_{\star}=1.06$ $M_{\odot}$, and a radius $R_{\star}=1.05$ $R_{\odot}$, on a $0.048 \pm 0.007$ AU orbit every 3.58 days. The radial velocity observations allow us to exclude highly eccentric orbits, namely, $e<0.065$ with a 99% confidence. Given its high mass and density, theoretical modelling of CoRoT-27b is demanding. We identify two solutions with heavy element mass fractions of $0.11\pm0.08$ $\mathrm{M_{\oplus}}$ and $0.07\pm0.06$ $\mathrm{M_{\oplus}}$, but even solutions void of heavy elements cannot be excluded. We carry out a secondary eclipse search from the CoRoT photometry using a method based on Bayesian model selection, but conclude that the noise level is too high to detect eclipses shallower than 9% of the transit depth.
    Astronomy and Astrophysics 02/2014; 562. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 $\pm$ 0.085 M$_{Jup}$ and a radius of 1.325 $\pm$ 0.043 R$_{Jup}$ which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 $\pm$ 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 $\pm$ 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 $\pm$ 0.04.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, $P$ = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exoplanet KOI-142b (Kepler-88) shows transit timing variations (TTVs) with a semi-amplitude of $\sim 12\,$ hours, earning the nickname of king of transit variations. Only the transit of the planet b was detected in the Kepler data with an orbital period of $\sim 10.92\,$ days and a radius of $\sim 0.36$ RJup. The TTVs together with the transit duration variations (TDVs) of KOI-142b were analysed by Nesvorny et al 2013 who found a unique solution for a companion perturbing planet. The authors predicted an outer non-transiting companion, KOI-142c, with a mass of $0.626\pm 0.03$ MJup and a period of $22.3397^{+0.0021}_{-0.0018}\,$days, and hence close to the 2:1 mean-motion resonance with the inner transiting planet. We report independent confirmation of KOI-142c using radial velocity observations with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derive an orbital period of $22.10 \pm 0.25\,$days and a minimum planetary mass of $0.76^{+0.32}_{0.16}\,$ MJup, both in good agreement with the predictions by previous transit timing analysis. Therefore, this is the first radial velocities confirmation of non-transiting planet discovered with transit timing variations, providing an independent validation of the TTVs technique.
    Astronomy and Astrophysics 11/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the frame of the search for extrasolar planets and brown dwarfs around early-type main-sequence stars, we present the detection of a giant planet around the young F-type star HD113337. We estimated the age of the system to be 150 +100/-50 Myr. Interestingly, an IR excess attributed to a cold debris disk was previously detected on this star. The SOPHIE spectrograph on the 1.93m telescope at Observatoire de Haute-Provence was used to obtain ~300 spectra over 6 years. We used our SAFIR tool, dedicated to the spectra analysis of A and F stars, to derive the radial velocity variations. The data reveal a 324.0 +1.7/-3.3 days period that we attribute to a giant planet with a minimum mass of 2.83 +- 0.24 Mjup in an eccentric orbit with e=0.46 +- 0.04. A long-term quadratic drift, that we assign to be probably of stellar origin, is superimposed to the Keplerian solution.
    Astronomy and Astrophysics 10/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a long-period brown-dwarf transiting companion of the solar-type star KOI-415. The transits were detected by the Kepler space telescope. We conducted Doppler measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence. The photometric and spectroscopic signals allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P = 166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79 (-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for a 10 Gyr, low-metallicity and non-irradiated object.
    09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the detection and characterization of the two new transiting, close-in, giant extrasolar planets KOI-200 b and KOI-889 b. They were first identified by the Kepler team as promising candidates from photometry of the Kepler satellite; we then established their planetary nature thanks to the radial velocity follow-up jointly secured with the spectrographs SOPHIE and HARPS-N. Combined analyses of the whole datasets allow the two planetary systems to be characterized. The planet KOI-200 b has mass and radius of 0.68 ± 0.09 MJup and 1.32 ± 0.14 RJup; it orbits in 7.34 days a F8V host star with mass and radius of 1.40-0.11+0.14 M⊙ and 1.51 ± 0.14 R⊙. The planet KOI-889 b is a massive planet with mass and radius of 9.9 ± 0.5 MJup and 1.03 ± 0.06 RJup; it orbits in 8.88 days an active G8V star with a rotation period of 19.2 ± 0.3 days, and mass and radius of 0.88 ± 0.06 M⊙ and 0.88 ± 0.04 R⊙. Both planets lie on eccentric orbits and are located just at the frontier between regimes where tides can explain circularization and where tidal effects are negligible. The two planets are among the first detected and characterized thanks to observations secured with HARPS-N, the new spectrograph recently mounted at the Telescopio Nazionale Galileo. These results illustrate the benefits that could be obtained from joint studies using two spectrographs as SOPHIE and HARPS-N.
    Astronomy and Astrophysics 06/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a transiting brown dwarf companion to KOI-205, a K0 main-sequence star, in a 11.720125-day period orbit. The transits were detected by the Kepler space telescope, and the reflex motion of the star was measured using radial velocity observations obtained with the SOPHIE spectrograph. The atmospheric parameters of the host stars were determined from the analysis of high-resolution, high signal-to-noise ratio ESPaDOns spectra obtained for this purpose. Together with spectrophotometric measurements recovered from the literature, these spectra indicate that the star is a mildly metallic K0 dwarf with Teff 5237 $\pm$ 60 K. The mass of the companion is 39.9 $\pm$ 1.0 MJup and its radius is 0.81 $\pm$ 0.02 RJup, in agreement with current theoretical predictions. This is the first time a bona fide brown dwarf companion is detected in orbit around a star of this type. The formation and orbital evolution of brown dwarf companions is briefly discussed in the light of this new discovery.
    Astronomy and Astrophysics 02/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the binarity of luminous blue variable stars observed with a set of techniques and instruments. Among them, observations at high angular resolution with the VLT-NACO, the VLTI-AMBER and with spectrographs such as the VLT-XSHOOTER allowed us to find several LBV stars as binaries or having a potential companion. In particular the LBV Pistol Star clearly presents radial velocity variations and line profiles modifications (double peak appearance). In addition, the absorption component of the P Cygni lines varies as well with the time indicating a potential wind structure variability. Our observations also show directly for the first time a companion to at least one of the observed LBVs (HD 168625). This one seems to affect the environment of the system. This system is known to be surrounded by several rings similar to those of SN1987A, possibly indicating a future supernova occurrence for this Galactic object. These results show that Eta Car is no longer unique.
    Circumstellar Dynamics at High Resolution; 12/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aim at resolving the circumstellar environment around beta Pic in the near-infrared in order to study the inner planetary system (< 200 mas, i.e., ~4 AU). Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. We detected near-infrared circumstellar emission around beta Pic that accounts for 1.37% +/- 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (> 1500 K) or dominated by the scattering of the stellar flux. In addition, we derived the limb-darkened angular diameter of beta Pic with an unprecedented accuracy (theta_LD= 0.736 +/- 0.019 mas). The presence of a small H-band excess originating in the vicinity of beta Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded.
    Astronomy and Astrophysics 10/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The close-in planet orbiting GJ 436 presents a puzzling orbital eccentricity considering its very short orbital period. Given the age of the system, this planet should have been tidally circularized a long time ago. Many attempts to explain this were proposed in recent years, either involving abnormally weak tides, or the perturbing action of a distant companion. We address here the latter issue based on Kozai migration. We propose that GJ 436b was formerly located further away from the star and that it underwent a migration induced by a massive, inclined perturber via Kozai mechanism. In this context, the perturbations by the companion trigger high amplitude variations to GJ 436b that cause tides to act at periastron. Then the orbit tidally shrinks to reach its present day location. We numerically integrate the 3-body system including tides and General Relativity correction. We first show that starting from the present-day location of GJ 436b inevitably leads to damping the Kozai oscillations and to rapidly circularizing the planet. Conversely, starting from 5-10 times further away allows the onset of Kozai cycles. The tides act in peak eccentricity phases and reduce the semi-major axis of the planet. The net result is an evolution characterized by two phases: a first one with Kozai cycles and a slowly shrinking semi-major axis, and a second one once the planet gets out of the Kozai resonance characterized by a more rapid decrease. The timescale of this process appears in most cases much longer than the standard circularization time of the planet by a factor larger than 50. This model can provide a solution to the eccentricity paradox of GJ 436b. Depending on the various orbital configurations, it can take several Gyrs to GJ 436b to achieve a full orbital decrease and circularization. According to this scenario, we could be witnessing today the second phase of the scenario where the semi-major axis is already reduced while the eccentricity is still significant. We then explore the parameter space and derive in which conditions this model can be realistic given the age of the system. This yields constraints on the characteristics of the putative companion.
    Astronomy and Astrophysics 08/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most exoplanet imagers consist of ground-based adaptive optics coronagraphic cameras which are currently limited in contrast, sensitivity and astrometric precision, but advantageously observe in the near-IR (1- 5{\mu}m). Because of these practical limitations, our current observational aim at detecting and characterizing planets puts heavy constraints on target selection, observing strategies, data reduction, and follow-up. Most surveys so far have thus targeted young systems (1-100Myr) to catch the putative remnant thermal radiation of giant planets, which peaks in the near-IR. They also favor systems in the solar neighborhood (d<80pc), which eases angular resolution requirements but also ensures a good knowledge of the distance and proper motion, which are critical to secure the planet status, and enable subsequent characterization. Because of their youth, it is very tempting to target the nearby star forming regions, which are typically twice as far as the bulk of objects usually combed for planets by direct imaging. Probing these interesting reservoirs sets additional constraints that we review in this paper by presenting the planet search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup (Lupus star forming region, 140-190pc). We show and discuss why age determination, the choice of evolutionary model for the central star and the planet, precise knowledge of the host star proper motion, relative or absolute astrometric accuracy, and patience are the key ingredients for exoplanet searches around more distant young stars. Unfortunately, most of the time, precision and perseverance are not paying off: we discovered a candidate companion around IM Lup in 2008, which we report here to be an unbound background object. We nevertheless review in details the lessons learned from our endeavor, and additionally present the best detection limits ever calculated for IM Lup.
    Astronomy and Astrophysics 07/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 +/- 0.04 times that of Earth (R_{\oplus}). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 +/- 8x10^{-6} days. We also report evidence of a 0.65 +/- 0.06 R_{\oplus} exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed, UCF-1.01 and UCF-1.02 would be called GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g/cm^3, we predict both candidates to have similar masses (~0.28 Earth-masses, M_{\oplus}, 2.6 Mars-masses) and surface gravities of ~0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T_{eq}, where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6-micron light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 microns supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.
    The Astrophysical Journal 07/2012; 755(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spectral characterization of sub-stellar companions is essential to understand their composition and formation processes. However, the large contrast ratio of the brightness of each object to that of its parent star limits our ability to extract a clean spectrum, free from any significant contribution from the star. During the development of the long slit spectroscopy (LSS) mode of IRDIS, the dual-band imager and spectrograph of SPHERE, we proposed a data analysis method to estimate and remove the contributions of the stellar spectrum. This method has never been tested on real data because of the lack of instrumentation capable of combining adaptive optics (AO), coronagraphy, and LSS. Nonetheless, a similar attenuation of the star can be obtained using a particular observing configuration. Test data were acquired using the AO-assisted spectrograph VLT/NACO. We obtained new J- and H-band spectra of SCR J1845-6357 B, a T6 companion to a nearby (3.85\pm0.02 pc) M8 star. This system is a well-suited benchmark as it is relatively wide (~1.0") with a modest contrast ratio (~4 mag), and a previously published JHK spectrum is available for reference. We demonstrate that (1) our method is efficient at estimating and removing the stellar contribution, (2) it allows to properly recover the spectral shape of the companion, and (3) it is essential to obtain an unbiased estimation of physical parameters. We also show that the slit configuration associated with this method allows us to use long exposure times with high throughput producing high signal-to-noise ratio data. However, the signal of the companion gets over-subtracted, particularly in our J-band data, compelling us to use a fake companion spectrum to estimate and compensate for the loss of flux. Finally, we report a new astrometric measurement of the position of the companion (sep = 0.817", PA = 227.92 deg).
    Astronomy and Astrophysics 04/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing<1", tau0>3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.
    Astronomy & Astrophysics - ASTRON ASTROPHYS. 09/2011; 535.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present multi-instrument and multi-wavelength observations of the famous LBV star Pistol Star. These observations are part of a larger program on early O stars at different metallicities. The Pistol Star has been claimed to be one of the most massive star known, with 250 solar masses. We present preliminary results based on X-shooter spectra, as well as observations performed with the VLTI-AMBER and the VLT-NACO adaptive optics. The X-shooter spectrograph provides simultaneously a spectrum from the UV to the K-band with a resolving power of ˜15000. The preliminary results obtained indicate that Pistol Star has similar properties to eta Car, including shells of matter, but is also a binary.
    Bulletin de la Societe Royale des Sciences de Liege 01/2011; 80:400-404.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The debris disk known as “The Moth” is named after its unusually asymmetric surface brightness distribution. It is located around the ~90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 μm. Polarimetric observations suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. We resolve both components at unprecedented resolution with VLT/NACO H-band imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component as a distinct narrow ring at inclination i = 84.3 ± 1.0°. We determine a semi-major axis of a = 61.25 ± 0.85 AU and an eccentricity of e = 0.045 ± 0.015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset from the star by at least 2.75 ± 0.85 AU. The offset, together with a relatively steep inner rim, could indicate a planetary companion that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object above the deuterium-burning limit for separations down to 0.3 arcsec. The ring shows a strong brightness asymmetry along both the major and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring. Based on observations collected at the European Southern Observatory, Chile, ESO program 0184.C-0567(E).Appendices are only available in electronic form at http://www.aanda.org
    Astronomy and Astrophysics 12/2010; · 5.08 Impact Factor