G. Olofsson

Stockholm University, Tukholma, Stockholm, Sweden

Are you G. Olofsson?

Claim your profile

Publications (194)368.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The $\textit{Herschel}$ DEBRIS, DUNES and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100 and 160 $\mu$m with the sensitivity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the Solar system's Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. We have fitted the flux densities measured from recent \textit{Herschel} observations with a simple two parameter ($T_{d}$, $L_{\rm IR}/L_{\star}$) black body model (or to the 3-$\sigma$ upper limits at 100 $\mu$m). From this uniform approach we calculate the fractional luminosity, radial extent, dust temperature and disc mass. We then plotted the calculated dust luminosity or upper limits against the stellar properties, e.g. effective temperature, metallicity, age, and identified correlations between these parameters. A total of eleven debris discs are identified around the 37 stars in the sample. An incidence of ten cool debris discs around the Sun-like exoplanet host stars (29 $\pm$ 9 %) is consistent with the detection rate found by DUNES (20.2 $\pm$ 2.0 %). For the debris disc systems, the dust temperatures range from 20 to 80 K, and fractional luminosities ($L_{\rm IR}/L_{\star}$) between 2.4 $\times$10$^{-6}$ and 4.1 $\times$10$^{-4}$. In the case of non-detections, we calculated typical 3-$\sigma$ upper limits to the dust fractional luminosities of a few $\times10^{-6}$. We recover the previously identified correlation between stellar metallicity and hot Jupiter planets in our data set. We find a correlation between the increased presence of dust, lower planet masses and lower stellar metallicities. (abridged)
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby binary aCentauri have higher than solar metallicities, which is thought to promote giant planet formation. We aim to determine the level of emission from debris in the aCen system. Having already detected the temperature minimum, Tmin, of aCenA, we here attempt to do so also for the companion aCenB. Using the aCen stars as templates, we study possible effects Tmin may have on the detectability of unresolved dust discs around other stars. We use Herschel and APEX photometry to determine the stellar spectral energy distributions. In addition, we use APEX for spectral line mapping to study the complex background around aCen seen in the photometric images. Models of stellar atmospheres and discs are used to estimate the amount of debris around these stars. For solar-type stars, a fractional dust luminosity fd 2e-7 could account for SEDs that do not exhibit the Tmin-effect. Slight excesses at the 2.5 sigma level are observed at 24 mu for both stars, which, if interpreted to be due to dust, would correspond to fd (1-3)e-5. Dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the aCen stars, viz. <~4e-6 MMoon of 4 to 1000 mu size grains, distributed according to n a^-3.5. Similarly, for filled-in Tmin emission, corresponding EKBs could account for ~1e-3 MMoon of dust. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The F-IR SED of aCenB is marginally consistent with the presence of a minimum temperature region in the upper atmosphere. We also show that an aCenA-like temperature minimum may result in an erroneous apprehension about the presence of dust around other stars.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.
    Science 12/2013; 342(6164):1343-1345. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: The dusty debris disk around the ~20 Myr old main-sequence A-star beta Pic is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant from the initial protoplanetary disk, although the dominant gas production mechanism is so far no identified. The origin of the observed overabundance of C and O compared to e.g. Na and Fe is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument aboard Herschel to observe and spectrally resolve C II 158 micron emission from the beta Pic debris disk. Assuming Keplerian rotation and a model for the line emission from the disk, we used the spectrally line profile to constrain the spatial distribution of the gas. Results: We detect the C II 158 micron emission. Modelling the shape of the emission line shows that most of the gas is located around ~100 AU or beyond. We estimate a total C gas mass of 0.013 Earth masses. The data suggest that more gas is located on the southwest side of the disk. The shape of the emission line in consistent with the hypothesis of a well-mixed gas. Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly worse fit to the observations. Conclusions: Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as "falling evaporating bodies" are unlikely to be the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model could favour a preferential depletion explanation for the overabundance of C and O. More stringent constraints on the spatial distributions will be available from ALMA observations of C I emission at 609 microns.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
    Asymmetrical Planetary Nebulae VI; 11/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A to M where the stellar inclination is known and can be compared to that of the spatially-resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ~<10 degrees. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of AU are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.
    Monthly Notices of the Royal Astronomical Society Letters 10/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the Herschel Guaranteed Time Key Project MESS (Mass loss of Evolved StarS) we have imaged a sample of planetary nebulae. In this paper we present the PACS and SPIRE images of the classical bipolar planetary nebula NGC 650. We used these images to derive a temperature map of the dust. We also constructed a photoionization and dust radiative transfer model using the spectral synthesis code Cloudy. To constrain this model, we used the PACS and SPIRE fluxes and combined these with hitherto unpublished IUE and Spitzer IRS spectra as well as various other data from the literature. The temperature map combined with the photoionization model were used to study various aspects of the central star, the nebula, and in particular the dust grains in the nebula. The central star parameters are determined to be T_eff = 208 kK and L = 261 L_sol assuming a distance of 1200 pc. The stellar temperature is much higher than previously published values. We confirm that the nebula is carbon-rich with a C/O ratio of 2.1. The nebular abundances are typical for a type IIa planetary nebula. With the photoionization model we determined that the grains in the ionized nebula are large (assuming single-sized grains, they would have a radius of 0.15 micron. Most likely these large grains were inherited from the asymptotic giant branch phase. The PACS 70/160 micron temperature map shows evidence for two radiation components heating the grains. The first component is direct emission from the central star, while the second component is diffuse emission from the ionized gas (mainly Ly alpha). We show that previous suggestions that there is a photo-dissociation region surrounding the ionized region are incorrect. The neutral material resides in dense clumps inside the ionized region. These may also harbor stochastically heated very small grains in addition to the large grains.
    Astronomy and Astrophysics 08/2013; · 5.08 Impact Factor
  • VizieR Online Data Catalog. 05/2013; 355:59011.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. We used {\it Herschel}/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 $\mu$m were obtained, complemented in some cases with observations at 70 $\mu$m, and at 250, 350 and 500 $\mu$m using SPIRE. The observing strategy was to integrate as deep as possible at 100 $\mu$m to detect the stellar photosphere. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of $\sim$ 12.1% $\pm$ 5% before \emph{Herschel} to $\sim$ 20.2% $\pm$ 2%. A significant fraction ($\sim$ 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160$\mu$m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
    05/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present and discuss new visual wavelength-range observations of the inner regions of the supernova remnant SNR 0540-69.3 that is located in the Large Magellanic Cloud (LMC). These observations provide us with more spatial and spectral information than were previously available for this object. We use these data to create a detailed three-dimensional model of the remnant, assuming linear expansion of the ejecta. With the observations and the model we study the general three-dimensional structure of the remnant, and the influence of an active region in the remnant - a "blob" - that we address in previous papers. We used the fibre-fed integral-field spectrograph VIMOS at the Very Large Telescope of the European Southern Observatory. The observations provide us with three-dimensional data in [OIII]5007 and [SII]6717,6731 at an 0.33x0.33 spatial sampling and a velocity resolution of about 35 km/s. We decomposed the two, partially overlapping, sulphur lines and used them to calculate electron densities across the remnant at high signal-to-noise ratio. Our analysis reveals a structure that stretches from the position of the "blob", and into the plane of the sky at a position angle of about 60 degrees. We speculate that the pulsar is positioned along this activity axis, where it has a velocity along the line of sight of a few hundred km/s. The "blob" is most likely a region of shock activity, as it is mainly bright in [SII]; future observations of [OII]3729 would be useful to test whether the S/O abundance ratio is higher than average for that location in the remnant. The striking resemblance in X-rays between the pulsar wind nebula (PWN) of SNR 0540-69.3 and the Crab, in combination with our findings in this paper, suggests that the symmetry axis is part of a torus in the PWN. (abridged)
    Monthly Notices of the Royal Astronomical Society 04/2013; 432(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. Aims: The region of the temperature reversal can be directly observed only in the far infrared and submillimetre spectral regime. We aim at determining the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star α Cen A. As a bonus this will also provide a detailed mapping of the spectral energy distribution, i.e. knowledge that is crucial when searching for faint, Kuiper belt-like dust emission around other stars. Methods: For the nearby binary system α Cen, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate stellar model atmospheres in the grid of Gaia/PHOENIX and compute the corresponding model for the G2 V star α Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to Spitzer-MIPS, Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of α Cen A in the far infared. Results: Similar to the Sun, the far infrared (FIR) emission of α Cen A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of α Cen A appears marginally cooler, Tmin ~ T160 μm = 3920 ± 375 K. Beyond the minimum near 160 μm, the brightness temperatures increase, and this radiation very likely originates in warmer regions of the chromosphere of α Cen A. Conclusions: To the best of our knowledge, this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun. Based on observations with Herschel, which is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia and with important participation from NASA.
    Astronomy and Astrophysics 01/2013; 549:L7. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. The region of the temperature reversal can be directly observed only in the far infrared and submm. We aim at the determination of the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star alpha Cen A. For the nearby binary system alpha Centauri, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate in the grid of GAIA/PHOENIX stellar model atmospheres and compute the corresponding model for the G2 V star alpha Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to MIPS, PACS, SPIRE and LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of alpha Cen A in the FIR. Similar to the Sun, the FIR emission of alpha Cen A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of alpha Cen A appears marginally cooler, Tmin=T160mu=3920+/-375 K. Beyond the minimum near 160mu, the brightness temperatures increase and this radiation likely originates in warmer regions of the chromosphere of alpha Cen A. To the best of our knowledge this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun.
    12/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PoGOLite is a hard X-ray polarimeter operating in the 25-100 keV energy band. The instrument design is optimised for the observation of compact astrophysical sources. Observations are conducted from a stabilised stratospheric balloon platform at an altitude of approximately 40 km. The primary targets for first balloon flights of a reduced effective area instrument are the Crab and Cygnus-X1. The polarisation of incoming photons is determined using coincident Compton scattering and photo-absorption events reconstructed in an array of plastic scintillator detector cells surrounded by a bismuth germanate oxide (BGO) side anticoincidence shield and a polyethylene neutron shield. A custom attitude control system keeps the polarimeter field-of-view aligned to targets of interest, compensating for sidereal motion and perturbations such as torsional forces in the balloon rigging. An overview of the PoGOLite project is presented and the outcome of the ill-fated maiden balloon flight is discussed.
    11/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the β Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of β Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though β Pictoris is more massive and more luminous and has a different planetary system architecture.
    Nature 10/2012; 490(7418):74-6. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope cooled to only 6K above absolute zero, SPICA will provide a unique environment where instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutes has been established to design and implement the SpicA FAR infrared Instrument SAFARI, an imaging spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory. SAFARI’s large instantaneous field of view combined with the extremely sensitive Transition Edge Sensing detectors will allow astronomers to very efficiently map large areas of the sky in the far infrared - in a square degree survey of a 1000 hours many thousands of faint sources will be detected, and a very large fraction of these sources will be fully spectroscopically characterised by the instrument. Efficiently obtaining such a large number of complete spectra is essential to address several fundamental questions in current astrophysics: how do galaxies form and evolve over cosmic time?, what is the true nature of our own Milky Way?, and why and where do planets like those in our own solar system come into being?
    Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 09/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. The binary B5 V star BD + 31°643 exhibits a disk-like structure detected at optical wavelengths. Even though the feature is well centered on the star, it has been argued, based on Spitzer observations, that the feature is a filament not directly associated to the binary star. Aims: The purpose of the present paper is to investigate whether polarization imaging may provide evidence either for or against the disk hypothesis. In addition, we aim at clarifying whether there might be any additional close companion to the binary star. Methods: We used the coronagraph PolCor in its polarization mode in combination with an EMCCD camera allowing short unit exposure times. As a result of shift-and-add and frame selection, the spatial resolution is improved compared to traditional CCD imaging. In order to possibly reveal an additional stellar companion, we used high resolution spectroscopy in the optical and high spatial resolution imaging in the near-IR. Results: The disk/filament is much better seen in polarization; it is narrow and a line drawn along the ridge passes within a second of arc from the star. The degree of polarization is high (≈50% after correction for the extended component of the reflection nebula) which means that the disk/filament must be approximately at the same distance as the star. Although we confirm that the feature is much brighter south-east than north-west of the star, the evidence that the feature is physically connected to the star is strengthened and suggests that we are witnessing the destruction process of an accretion disk. Our spectroscopy shows that at least one of the stars is a spectroscopic binary. We were, however, not able to spatially resolve any stellar component in addition to the two well separated stars. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
    Astronomy and Astrophysics 08/2012; 544:A43. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star β Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca ii gas at high disk latitudes call for additional investigation to exclude or confirm its connection to observed dust structures or suggested cometary bodies on inclined eccentric orbits. Aims: We set out to recover a complete image of the Fe i and Ca ii gas emission around β Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. Methods: The multiple fiber facility FLAMES/GIRAFFE at the Very Large Telescope (VLT), with the large integral-field-unit ARGUS, was used to obtain spatially resolved optical spectra (from 385.9 to 404.8 nm) in four regions covering the northeast and southwest side of the disk. Emission lines from Fe i (at 386.0 nm) and Ca ii (at 393.4 and 396.8 nm) were mapped and could be used to fit a parametric function for the disk gas distribution, using a gas-ionisation code for gas-poor debris disks. Results: Both Fe i and Ca ii emission are clearly detected, with the former dominating along the disk midplane, and the latter revealing vertically more extended gas. The surface intensity of the Fe i emission is lower but more extended in the northeast (reaching the 210 AU limit of our observations) than in the southwest, while Ca ii shows the opposite asymmetry. The modelled Fe gas disk profile shows a linear increase in scale height with radius, and a vertical profile that suggests dynamical interaction with the dust. We also qualitatively demonstrate that the Ca ii emission profile can be explained by optical thickness in the disk midplane, and does not require Ca to be spatially separated from Fe. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 382.C-0394 and 384.C-0551.
    Astronomy and Astrophysics 08/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circumstellar debris disks older than a few Myr should be largely devoid of primordial gas remaining from the protoplanetary disk phase. Tracing the origin of observed atomic gas in Keplerian rotation in the edge-on debris disk surrounding the ~12 Myr old star {\beta} Pictoris requires more detailed information about its spatial distribution than has previously been acquired by limited slit spectroscopy. Especially indications of asymmetries and presence of Ca II gas at high disk latitudes call for additional investigation. We set out to recover a complete image of the Fe I and Ca II gas emission around {\beta} Pic by spatially resolved, high-resolution spectroscopic observations to better understand the morphology and origin of the gaseous disk component. The multiple fiber facility FLAMES/GIRAFFE at the VLT, with the large IFU ARGUS, was used to obtain spatially resolved optical spectra in four regions covering the northeast and southwest side of the disk. Emission lines from Fe I and Ca II were mapped and could be used to fit a parametric function for the disk gas distribution, using a gas-ionisation code for gas-poor debris disks. Both Fe I and Ca II emission are clearly detected, with the former dominating along the disk midplane, and the latter revealing vertically more extended gas. The surface intensity of the Fe I emission is lower but more extended in the northeast (reaching the 210 AU limit of our observations) than in the southwest, while Ca II shows the opposite asymmetry. The modelled Fe gas disk profile shows a linear increase in scale height with radius, and a vertical profile that suggests dynamical interaction with the dust. We also qualitatively demonstrate that the Ca II emission profile can be explained by optical thickness in the disk midplane, and does not require Ca to be spatially separated from Fe. [ABRIDGED]
    07/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CW Leo has been observed six times between October 2009 and June 2012 with the SPIRE instrument on board the Herschel satellite. Variability has been detected in the flux emitted by the central star with a period of 639 \pm 4 days, in good agreement with determinations in the literature. Variability is also detected in the bow shock around CW Leo that had previously been detected in the ultraviolet and Herschel PACS/SPIRE data. Although difficult to prove directly, our working hypothesis is that this variability is directly related to that of the central star. In this case, fitting a sine curve with the period fixed to 639 days results in a time-lag in the variability between bow shock and the central star of 402 \pm 37 days. The orientation of the bow shock relative to the plane of the sky is unknown (but see below). For an inclination angle of zero degrees, the observed time-lag translates into a distance to CW Leo of 130 \pm 13 pc, and for non-zero inclination angles the distance is smaller. Fitting the shape of the bow shock with an analytical model (Wilkin 1996), the effect of the inclination angle on the distance may be estimated. Making the additional assumption that the relative peculiar velocity between the interstellar medium (ISM) and CW Leo is determined entirely by the star space velocity with respect to the local standard of rest (i.e. a stationary ISM), the inclination angle is found to be (-33.3 \pm 0.8) degrees based on the observed proper motion and radial velocity. Using the Wilkin model, our current best estimate of the distance to CW Leo is 123 \pm 14 pc. For a distance of 123 pc, we derive a mean luminosity of 7790 \pm 150 Lsol (internal error).
    Astronomy and Astrophysics 06/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herschel images in six photometric bands show the thermal emission of the debris disk surrounding β Pic. In the three PACS bands at 70 μm, 100 μm and 160 μm and in the 250 μm SPIRE band, the disk is well-resolved, and additional photometry is available in the SPIRE bands at 350 μm and 500 μm, where the disk is only marginally resolved. The SPIRE maps reveal a blob to the southwest of β Pic, coinciding with submillimetre detection of excess emission in the disk. We investigated the nature of this blob. Our comparison of the colours, spectral energy distribution and size of the blob, the disk and the background sources shows that the blob is most likely a background source with a redshift between z = 1.0 and z = 1.6. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
    Astronomy and Astrophysics 05/2012; · 5.08 Impact Factor

Publication Stats

831 Citations
368.04 Total Impact Points

Institutions

  • 2009–2014
    • Stockholm University
      • Department of Astronomy
      Tukholma, Stockholm, Sweden
  • 2004–2014
    • AlbaNova University Center
      Tukholma, Stockholm, Sweden
  • 2010
    • University of Leuven
      Louvain, Flanders, Belgium