Françoise Russo-Marie

Institut Cochin, Lutetia Parisorum, Île-de-France, France

Are you Françoise Russo-Marie?

Claim your profile

Publications (2)5.75 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8-24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative.
    Journal of Cellular and Molecular Medicine 02/2011; 16(1):41-58. DOI:10.1111/j.1582-4934.2011.01288.x · 3.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Massive neuronal apoptosis and accumulation of protein aggregates in the cortex and hippocampus of the brain are hallmarks of several neurodegenerative disorders, indicating ubiquitin proteasome system (UPS) dysfunction. Lactacystin, a classical proteasome inhibitor, is used to simulate ubiquitin proteasome system dysfunction in neurons to mimic pathological features of neurodegenerative disorders. Based on Western blot analyses, we reported for the first time that annexin A3 (AnxA3) is not only endogenously expressed in mouse cortical neurons but also more importantly, by gene expression microarray and real-time RT-PCR that it is greatly transcriptional up-regulated to approximately 11- and 15-fold, respectively in murine primary cortical neurons with 1μM lactacystin for 24h. Up-regulation of AnxA3 expression occurred after 12-15h post-lactacystin treatment, which corresponded with the onset of neuronal injury, with approximately 25% of the neurons being non-viable by that time interval. Western blot analysis with anti-AnxA3 antibodies further validated that up-regulation of AnxA3 only occurs with onset of neuronal death, and not with the onset of proteasome inhibition, which occurs at 4.5h post-lactacystin treatment. Over-expression studies suggested AnxA3 might be involved in death promotion during lactacystin-mediated neuronal death, since caspase-3 activation was significantly stronger upon neuronal AnxA3 over-expression. We propose AnxA3 up-regulation may have significant relevance in the elucidation of neurodegenerative pathophysiology.
    Neuroscience Letters 11/2010; 485(2):129-33. DOI:10.1016/j.neulet.2010.08.089 · 2.06 Impact Factor