Franck Remoue

Université de Montpellier 1, Montpelhièr, Languedoc-Roussillon, France

Are you Franck Remoue?

Claim your profile

Publications (74)262.84 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the control tools to reduce malaria transmission is the use of LLINs. However, several studies show that household bed net use is quite low. A study was developed to better understand the cultural factors that might explain these gaps in Benin. One reason mentioned is that bed nets can catch on fire and cause harm. This paper presents a summary of these findings, their analysis and the ensuing issues.
    Malaria Journal 06/2014; 13(1):247. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While vaccines elicit a protective response in most recipients, studies suggest that environmental and nutritional factors can influence the strength of the individual response to immunization and to subsequent natural infectious challenges. We conducted a longitudinal survey in Senegal to assess the individual response to B. pertussis, a respiratory disease against which Senegalese children are vaccinated before the age of one (Clinicaltrials.gov ID: NCT01545115). A cohort of 203 children aged 1-10 from four villages of the Senegal River Valley was followed-up for 14 months (October 2008-January 2010). During that period, four visits have been made to the villages to assess the immunological and nutritional status of these children and to determine risk factors involved in the modulation of their humoral immune response to B. pertussis toxin. A multivariate model has demonstrated that birth season and nutritional status appeared to modulate humoral response to pertussis toxin. Moreover, response to B. pertussis was dependent on age, village and time of visit. These results are consistent with the hypothesis that environmental and nutritional factors modulate children's response to pertussis following natural infection or vaccination.
    Vaccine 04/2014; · 3.77 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using human IgG antibody response to the Aedes Nterm-34 kDa salivary peptide as an indicator of human exposure to Aedes bites in surveying exposed populations from areas at risk of dengue virus (DENV) transmission in urban settings of Vientiane city, Lao PDR. Enzyme-linked immunosorbent assay tests were performed to measure the IgG response to Nterm-34 kDa peptide in blood samples collected within a flavivirus seroprevalence survey carried out in 2006 including 3558 randomly selected individuals. The level of IgG response to the Nterm-34 kDa peptide in individuals was analysed in relation to the level of urbanisation of the individual's residence, areas that presented significant differences in the prevalence of recent DENV infection. No differences were observed in the anti-Nterm-34 kDa IgG level between DENV-positive and DENV-negative individuals. However, the level of specific IgG response was higher among individuals living in slightly urbanised neighbourhoods than among those in more highly urbanised areas (P < 0.0001). Interestingly, a similar pattern had already been observed concerning the prevalence of recent DENV infection in the same populations. The results of this retrospective study indicate that the evaluation of human IgG response to the Aedes Nterm-34 kDa salivary peptide could be a useful indicator to identify places with risk of dengue virus transmission in urban endemic areas.
    Tropical Medicine & International Health 02/2014; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate immunity to vaccine-preventable diseases according to nutritional status, a longitudinal study was conducted in Senegalese children ages 1-9 years old. A linear regression analysis predicted that weight for age was positively associated with immunoglobulin G (IgG) response to tetanus toxoid in children born during the rainy season or at the beginning of the dry season. A relationship between village, time of visits, and levels of antibodies to tetanus showed that environmental factors played a role in modulating humoral immunity to tetanus vaccine over time. Moreover, a whole-blood stimulation assay highlighted that the production of interferon-γ (IFN-γ) in response to tetanus toxoid was compromised in stunted children. However, the absence of cytokine modulation in response to Mycobacterium tuberculosis-purified protein derivatives and phytohemagglutinin suggests that the overall ability to produce IFN-γ was preserved in stunted children. Therefore, these results show that nutritional status can specifically alter the efficacy of long-lasting immunity to tetanus.
    The American journal of tropical medicine and hygiene 01/2014; · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluatedbefore and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker.
    BioMed research international. 01/2014; 2014:746509.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.
    PLoS ONE 01/2014; 9(8):e103816. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three Glossina salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals. Methodology/Principal Findings: Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf1 18–43 specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p,0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf1 18–43 IgG levels and the risk of being infected by Trypanosoma brucei gambiense in the sleeping sickness foci of Guinea. Conclusion/Significance: The Tsgf1 18–43 peptide is a suitable and promising candidate to develop a standardize immunoassay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs. Copyright: ß 2013 Dama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Medical surveys and laboratory work were supported by the French Ministry of Foreign Affairs (FSP/REFS and Aires-SUD projects), the World Health Organization (WHO) and the International Atomic Energy Agency (IAEA). ED was a recipient of an Institut de Recherche pour le Développement (IRD) PhD fellowship. We would also like to thank the Targeting Tsetse Project funded by the Bill and Melinda Gates Foundation who paid for the synthetic peptides. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Northern part of Senegal is characterized by a low and seasonal transmission of malaria. However, some Plasmodium falciparum infections and malaria clinical cases are reported during the dry season. This study aims to assess the relationship between IgG antibody (Ab) responses to gSG6-P1 mosquito salivary peptide and the prevalence of P. falciparum infection in children during the dry season in the Senegal River Valley. The positive association of the Ab response to gSG6-P1, as biomarker of human exposure to Anopheles vector bite, and P. falciparum infectious status (uninfected, infected-asymptomatic or infected-symptomatic) will allow considering this biomarker as a potential indicator of P. falciparum infection risk during the dry season. Microscopic examination of thick blood smears was performed in 371 and 310 children at the start (January) and at the end (June) of the dry season, respectively, in order to assess the prevalence of P. falciparum infection. Collected sera were used to evaluate IgG response to gSG6-P1 by ELISA. Association between parasitological and clinical data (infected-asymptomatic or infected-symptomatic) and the anti-gSG6-P1 IgG levels were evaluated during this period. The prevalence of P. falciparum infection was very low to moderate according to the studied period and was higher in January (23.5%) compared to June (3.5%). Specific IgG response was also different between uninfected children and asymptomatic carriers of the parasite. Children with P. falciparum infection in the dry season showed higher IgG Ab levels to gSG6-P1 than uninfected children. The results strengthen the hypothesis that malaria transmission is maintained during the dry season in an area of low and seasonal transmission. The measurement of IgG responses to gSG6-P1 salivary peptide could be a pertinent indicator of human malaria reservoir or infection risk in this particular epidemiological context. This promising immunological marker could be useful for the evaluation of the risk of P. falciparum exposure observed during dry season and, by consequences, could be used for the survey of potential pre-elimination situation.
    Malaria Journal 08/2013; 12(1):301. · 3.49 Impact Factor
  • Source
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of malaria sporozoite rates in the salivary glands of Anopheles gambiae is essential for estimating the number of infective mosquitoes, and consequently, the entomological inoculation rate (EIR). EIR is a key indicator for evaluating the risk of malaria transmission. Although the enzyme-linked immunosorbent assay specific for detecting the circumsporozoite protein (CSP-ELISA) is routinely used in the field, it presents several limitations. A multiplex PCR can also be used to detect the four species of Plasmodium in salivary glands. The aim of this study was to evaluate the efficacy of a real-time quantitative PCR in detecting and quantifying wild Plasmodium falciparum in the salivary glands of An. gambiae. Anopheles gambiae (n=364) were experimentally infected with blood from P. falciparum gametocyte carriers, and P. falciparum in the sporozoite stage were detected in salivary glands by using a real-time quantitative PCR (qPCR) assay. The sensitivity and specificity of this qPCR were compared with the multiplex PCR applied from the Padley method. CSP-ELISA was also performed on carcasses of the same mosquitoes. The prevalence of P. falciparum and the intensity of infection were evaluated using qPCR. This method had a limit of detection of six sporozoites per muL based on standard curves. The number of P. falciparum genomes in the salivary gland samples reached 9,262 parasites/muL (mean: 254.5; 95% CI: 163.5-345.6). The qPCR showed a similar sensitivity (100%) and a high specificity (60%) compared to the multiplex PCR. The agreement between the two methods was "substantial" (kappa = 0.63, P <0.05). The number of P. falciparum-positive mosquitoes evaluated with the qPCR (76%), multiplex PCR (59%), and CSP-ELISA (83%) was significantly different (P <0.005). The qPCR assay can be used to detect P. falciparum in salivary glands of An. gambiae. The qPCR is highly sensitive and is more specific than multiplex PCR, allowing an accurate measure of infective An. gambiae. The results also showed that the CSP-ELISA overestimates the sporozoite rate, detecting sporozoites in the haemolymph in addition to the salivary glands.
    Malaria Journal 07/2013; 12(1):224. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the context of the Pan African Tsetse and Trypanosomiasis Eradication Campaign, the value of tsetse saliva antibodies as a biomarker of cattle exposure to tsetse flies was evaluated, as this could provide an alternative and complementary tool to conventional entomological methods. Serum immune reactivity to Glossina (G.) palpalis (p.) gambiensis, G. tachinoides and G. morsitans (m.) submorsitans whole saliva extracts (WSE) were monitored in cattle from both tsetse free and tsetse infested areas, and in cows experimentally exposed to tsetse flies and other hematophagous arthropods. In the tsetse infested area, cattle IgG responses to Glossina WSE were significantly higher during the dry season (p<0.0001) when herds are most exposed to tsetse flies and in infected animals (p=0.01) as expected in the case of a biomarker of exposure. Experimental studies further confirmed this as a quick rise of specific IgGs was observed in animals exposed to tsetse flies (within weeks), followed by a rapid clearance after exposure was stopped. In contrast to the two other tsetse species, G. m. submorsitans WSE enabled to detect exposure to all tsetse species and were associated with low level of cross-reactivity to other blood sucking arthropods. Finally, IgG responses to G. m. submorsitans salivary antigens enabled to distinguish different groups of cows according to exposure levels, thus indicating that tsetse saliva antibodies are not only indicators of tsetse exposure but also are correlated to the intensity of tsetse contacts (p=0.0031). Implementation of this new sero-epidemiological marker of cattle exposure to tsetse flies in the framework of tsetse elimination campaigns is discussed.
    Veterinary Parasitology 05/2013; · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Study of the human antibody (Ab) response to Aedes salivary proteins can provide new biomarkers to evaluate human exposure to vector bites. The identification of genus- and/or species-specific proteins is necessary to improve the accuracy of biomarkers. We analysed Aedes albopictus immunogenic salivary proteins by 2D immunoproteomic technology and compared the profiles according to human individual exposure to Ae. albopictus or Ae. aegypti bites. Strong antigenicity to Ae. albopictus salivary proteins was detected in all individuals whatever the nature of Aedes exposure. Amongst these antigenic proteins, 68% are involved in blood feeding, including D7 protein family, adenosine deaminase, serpin and apyrase. This study provides an insight into the repertoire of Ae. albopictus immunogenic salivary proteins for the first time.
    Insect Molecular Biology 05/2013; · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Over the past decade, a sharp decline of malaria burden has been observed in several countries. Consequently, the conventional entomological methods have become insufficiently sensitive and probably under-estimate micro-geographical heterogeneity of exposure and subsequent risk of malaria transmission. In this study, we investigated whether the human antibody (Ab) response to Anopheles salivary gSG6-P1 peptide, known as a biomarker of Anopheles exposure, could be a sensitive and reliable tool for discriminating human exposure to Anopheles bites in area of low and seasonal malaria transmission. METHODS: A multi-disciplinary survey was performed in Northern Senegal where An. gambiae s.l. is the main malaria vector. Human IgG Ab response to gSG6-P1 salivary peptide was compared according to the season and villages in children from five villages in the middle Senegal River valley, known as a low malaria transmission area. RESULTS: IgG levels to gSG6-P1 varied considerably according to the villages, discriminating the heterogeneity of Anopheles exposure between villages. Significant increase of IgG levels to gSG6-P1 was observed during the peak of exposure to Anopheles bites, and decreased immediately after the end of the exposure season. In addition, differences in the season-dependent specific IgG levels between villages were observed after the implementation of Long-Lasting Insecticidal Nets by The National Malaria Control Program in this area. CONCLUSION: The gSG6-P1 salivary peptide seems to be a reliable tool to discriminate the micro-geographical heterogeneity of human exposure to Anopheles bites in areas of very low and seasonal malaria transmission. A biomarker such as this could also be used to monitor and evaluate the possible heterogeneous effectiveness of operational vector control programs in low-exposure areas.
    Parasites & Vectors 03/2013; 6(1):68. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The saliva of blood sucking arthropods contains a number of pharmacologically active compounds that induce an antibody response in exposed human individuals. The objectives of the present study were (i) to assess the human IgG response directed against salivary antigens of Glossina palpalis gambiensis, the main vector of Trypanosoma brucei gambiense in West Africa, as a biomarker of human-tsetse contacts; and (ii) to identify specific salivary antigens. Immune reactivity of human plasma collected within active human African trypanosomiasis (HAT) foci (coastal Guinea), historical foci where tsetse flies are still present (South-West Burkina Faso) and a tsetse free area (Bobo-Dioulasso, Burkina Faso), was measured by ELISA against whole saliva extracts. In the active HAT foci and areas where tsetse flies were present in high densities, specific IgG responses were significantly higher (p<0.0001) to those in Bobo-Dioulasso or in Loropeni, where tsetse flies were either absent or only present at low densities. Furthermore, 2D-electrophoresis combined with mass spectrometry enabled to reveal that several antigens were specifically recognized by plasma from exposed individuals. Among them, four salivary proteins were successfully identified (Ada, 5'Nuc, Ag5 and Tsgf1). These results represent a first attempt to identify Glossina salivary proteins or synthetic peptides to develop a standardized and specific biomarker of tsetse exposure in West Africa.
    Microbes and Infection 03/2013; · 2.92 Impact Factor
  • Source
    The Lancet Infectious Diseases 02/2013; 13(2):112-3. · 19.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human-vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.
    PLoS ONE 01/2013; 8(6):e66354. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three Glossina salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals. Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf118-43 specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p<0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf118-43 IgG levels and the risk of being infected by Trypanosoma brucei gambiense in the sleeping sickness foci of Guinea. The Tsgf118-43 peptide is a suitable and promising candidate to develop a standardize immunoassay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs.
    PLoS Neglected Tropical Diseases 01/2013; 7(9):e2455. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis). Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. METHODS: For this purpose, salivary gland proteins 6 (SG6) and 5' nucleotidases (5' nuc) from An. gambiae (gSG6 and g-5' nuc) and An. funestus (fSG6 and f-5' nuc) were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46) that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n =45). RESULTS: The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5' nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5' nucleotidase protein. CONCLUSION: This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.
    Malaria Journal 12/2012; 11(1):439. · 3.49 Impact Factor

Publication Stats

892 Citations
262.84 Total Impact Points

Institutions

  • 2010–2014
    • Université de Montpellier 1
      Montpelhièr, Languedoc-Roussillon, France
    • Université Jean Monnet
      Saint-Étienne, Rhône-Alpes, France
  • 2013
    • Centre international de recherche-développement sur l'elevage en zone subhumide (CIRDES)
      Bobo-Diulasso, High-Basins Region, Burkina Faso
    • Kasetsart University
      Krung Thep, Bangkok, Thailand
  • 2012–2013
    • Centre de Recherche Entomologique de Cotonou
      Kotonu, Littoral, Benin
  • 2007–2013
    • Institute of Research for Development
      Marsiglia, Provence-Alpes-Côte d'Azur, France
    • Centre de Recherche Biomedicale Espoir pour la Santé
      Ndar, Saint-Louis, Senegal
  • 1997–2010
    • Institut Pasteur de Lille
      Lille, Nord-Pas-de-Calais, France
  • 2004
    • Pierre and Marie Curie University - Paris 6
      Lutetia Parisorum, Île-de-France, France
    • University of Liège
      • Department of Pathology
      Liège, WAL, Belgium
  • 2001
    • Ghent University
      • Faculty of Veterinary Medicine
      Gand, Flanders, Belgium
  • 2000
    • Centre hospitalier Laennec de Creil
      Creil, Picardie, France