Fernando Abad-Franch

Universidade do Estado do Amazonas, Manáos, Amazonas, Brazil

Are you Fernando Abad-Franch?

Claim your profile

Publications (36)120.89 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Scientists, program managers and international agency officials we all share the same fundamental mandate: to come up with what is best for people living at risk of being infected by T. cruzi. But to help improve disease prevention and control programs we need to reassess the adequacy and implications of past and current evalua-tion practices and, when necessary, openly debate over innovative strategies to find the best way forward. Roots of the debate -Our opinion piece stemmed from a meeting held in Brasilia on June 2012 to discuss the possibility of certifying the interruption of T. cruzi transmission (CIT) by native, "secondary" vector spe-cies in Brazil. We sought to raise awareness about the dangers of making influential public health decisions based on achievements that are not properly documented and/or that may not be applicable under many common circumstances. In particular, we believe that formerly successful recipes against non-native vector popula-tions (Triatoma infestans in Brazil or Rhodnius prolixus in Central America) are unlikely to work against native vectors in current scenarios dominated by low political priority, decentralisation of health systems and weaker vector control services. Native vectors maintain widespread foci in natural habitats from which they regularly invade and sometimes colonise human dwellings. They play substantial roles in T. cruzi transmission to humans and we must incorporate this complexity into our strategies and policies. Impor-tantly, all New World triatomine species, including the main "domestic" vectors (T. infestans, R. prolixus and Triatoma dimidiata), are native to some region in the Americas. Our letter called attention to these issues and suggested a general strategic framework for the current and future scenarios of vector-borne Chagas disease. The elimination of non-native vector species relied on area-wide, blanket insecticide-spraying campaigns conducted by professional spray teams from vertically-structured control programs. This so-called "attack" phase worked well, although not everywhere and CITs were overall justified for some regions in the past sce-nario of the 1990s. Progress from the vertical attack phase to a longitudinal surveillance phase was based on an assessment of impact at various levels (locality and state, province or department). Unfortunately, the sur-veillance phase was often discontinued after CITs were issued; this happened, for instance, in many Brazilian municipalities. The powerful notion of "interruption of transmission" made it hard to justify efforts and invest-ment in vector and disease surveillance. The emergence and expansion of dengue, combined with decentralisa-tion of health services, also distracted resources away from Chagas disease control throughout Latin America (Yadón et al. 2006). The Brazilian case clearly illustrates one major potential side effect of CIT-based policies: the deactivation of longitudinal surveillance systems is a very likely outcome. Current scenarios of T. cruzi transmission and vec-tor control [summarised in Table of Abad-Franch et al. (2013)] differ in several ways from those that prevailed in the 1990s.
    02/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Certifying the absence of Chagas disease transmission by native vectors lacks scientific grounds and weakens long-term control-surveillance systems to the detriment of people living under risk conditions. Instead, a regular "certification of good practice" (including vector control-surveillance, case detection/patient care and blood safety) could help achieve sustained disease control.
    Memórias do Instituto Oswaldo Cruz 04/2013; 108(2):251-4. · 1.36 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Triatoma dimidiata is among the main vectors of Chagas disease in Latin America. However, and despite important advances, there is no consensus about the taxonomic status of phenotypically divergent T. dimidiata populations, which in most recent papers are regarded as subspecies. A total of 126 cyt b sequences (621 bp long) were produced for specimens from across the species range. Forty-seven selected specimens representing the main cyt b clades observed (after a preliminary phylogenetic analysis) were also sequenced for an ND4 fragment (554 bp long) and concatenated with their respective cyt b sequences to produce a combined data set totalling 1175 bp/individual. Bayesian and Maximum-Likelihood phylogenetic analyses of both data sets (cyt b, and cyt b+ND4) disclosed four strongly divergent (all pairwise Kimura 2-parameter distances >0.08), monophyletic groups: Group I occurs from Southern Mexico through Central America into Colombia, with Ecuadorian specimens resembling Nicaraguan material; Group II includes samples from Western-Southwestern Mexico; Group III comprises specimens from the Yucatán peninsula; and Group IV consists of sylvatic samples from Belize. The closely-related, yet formally recognized species T. hegneri from the island of Cozumel falls within the divergence range of the T. dimidiata populations studied. We propose that Groups I-IV, as well as T. hegneri, should be regarded as separate species. In the Petén of Guatemala, representatives of Groups I, II, and III occur in sympatry; the absence of haplotypes with intermediate genetic distances, as shown by multimodal mismatch distribution plots, clearly indicates that reproductive barriers actively promote within-group cohesion. Some sylvatic specimens from Belize belong to a different species - likely the basal lineage of the T. dimidiata complex, originated ∼8.25 Mya. The evidence presented here strongly supports the proposition that T. dimidiata is a complex of five cryptic species (Groups I-IV plus T. hegneri) that play different roles as vectors of Chagas disease in the region.
    PLoS ONE 01/2013; 8(8):e70974. · 3.73 Impact Factor
  • Source
    Felipe Guerra-Silveira, Fernando Abad-Franch
    [show abstract] [hide abstract]
    ABSTRACT: Infectious disease incidence is often male-biased. Two main hypotheses have been proposed to explain this observation. The physiological hypothesis (PH) emphasizes differences in sex hormones and genetic architecture, while the behavioral hypothesis (BH) stresses gender-related differences in exposure. Surprisingly, the population-level predictions of these hypotheses are yet to be thoroughly tested in humans. For ten major pathogens, we tested PH and BH predictions about incidence and exposure-prevalence patterns. Compulsory-notification records (Brazil, 2006-2009) were used to estimate age-stratified ♂:♀ incidence rate ratios for the general population and across selected sociological contrasts. Exposure-prevalence odds ratios were derived from 82 published surveys. We estimated summary effect-size measures using random-effects models; our analyses encompass ∼0.5 million cases of disease or exposure. We found that, after puberty, disease incidence is male-biased in cutaneous and visceral leishmaniasis, schistosomiasis, pulmonary tuberculosis, leptospirosis, meningococcal meningitis, and hepatitis A. Severe dengue is female-biased, and no clear pattern is evident for typhoid fever. In leprosy, milder tuberculoid forms are female-biased, whereas more severe lepromatous forms are male-biased. For most diseases, male bias emerges also during infancy, when behavior is unbiased but sex steroid levels transiently rise. Behavioral factors likely modulate male-female differences in some diseases (the leishmaniases, tuberculosis, leptospirosis, or schistosomiasis) and age classes; however, average exposure-prevalence is significantly sex-biased only for Schistosoma and Leptospira. Our results closely match some key PH predictions and contradict some crucial BH predictions, suggesting that gender-specific behavior plays an overall secondary role in generating sex bias. Physiological differences, including the crosstalk between sex hormones and immune effectors, thus emerge as the main candidate drivers of gender differences in infectious disease susceptibility.
    PLoS ONE 01/2013; 8(4):e62390. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Rhodnius barretti , a new triatomine species, is described based on adult specimens collected in rainforest environments within the Napo ecoregion of western Amazonia (Colombia and Ecuador). R. barretti resembles Rhodnius robustus s.l. , but mitochondrial cytochrome b gene sequences reveal that it is a strongly divergent member of the "robustus lineage", i.e., basal to the clade encompassing Rhodnius nasutus , Rhodnius neglectus , Rhodnius prolixus and five members of the R. robustus species complex. Morphometric analyses also reveal consistent divergence from R. robustus s.l. , including head and, as previously shown, wing shape and the length ratios of some anatomical structures. R. barretti occurs, often at high densities, in Attalea butyracea and Oenocarpus bataua palms. It is strikingly aggressive and adults may invade houses flying from peridomestic palms. R. barretti must therefore be regarded as a potential Trypanosoma cruzi vector in the Napo ecoregion, where Chagas disease is endemic.
    Memórias do Instituto Oswaldo Cruz 01/2013; 108 Suppl 1:92-9. · 1.36 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: and are the vectors of dengue, the most important arboviral disease of humans. To date, ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on site-occupancy dynamics, considering meteorological and dwelling-level covariates. site-occupancy estimates (mean 0.91; range 0.79-0.97) were much higher than reported by routine surveillance based on 'rapid larval surveys' (0.03; 0.02-0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50-0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum () and minimum () summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from 'rapid larval surveys' suggests, together with the lack of effect of local control campaigns on infestation, that many breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim.
    PLoS ONE 01/2013; 8(3):e58420. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: [This corrects the article on p. e1822 in vol. 6.].
    PLoS Neglected Tropical Diseases 12/2012; 6(12). · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread.
    Evolutionary Applications 11/2012; 5(7):664-76. · 4.15 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is, with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not suited for observational data - particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus (MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses for arboviral infection risk factor assessment. A cross-sectional survey of anti-MAYV antibodies revealed 44% prevalence (n = 270 subjects) in a central Amazon rural settlement. NHT suggested that residents of village-like household clusters and those using closed toilet/latrines were at higher risk, while living in non-village-like areas, using bednets, and owning fowl, pigs or dogs were protective. The "minimum adequate" SWR model retained only residence area and bednet use. Using MMI, we identified relevant covariates, quantified their relative importance, and estimated effect-sizes (β±SE) on which to base inference. Residence area (β(Village) = 2.93±0.41; β(Upland) = -0.56±0.33, β(Riverbanks) = -2.37±0.55) and bednet use (β = -0.95±0.28) were the most important factors, followed by crop-plot ownership (β = 0.39±0.22) and regular use of a closed toilet/latrine (β = 0.19±0.13); domestic animals had insignificant protective effects and were relatively unimportant. The SWR model ranked fifth among the 128 models in the final MMI set. Our analyses illustrate how MMI can enhance inference on infection risk factors when compared with NHT or SWR. MMI indicates that forest crop-plot workers are likely exposed to typical MAYV cycles maintained by diurnal, forest dwelling vectors; however, MAYV might also be circulating in nocturnal, domestic-peridomestic cycles in village-like areas. This suggests either a vector shift (synanthropic mosquitoes vectoring MAYV) or a habitat/habits shift (classical MAYV vectors adapting to densely populated landscapes and nocturnal biting); any such ecological/adaptive novelty could increase the likelihood of MAYV emergence in Amazonia.
    PLoS Neglected Tropical Diseases 10/2012; 6(10):e1846. · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco. Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI(95)] 2.59-10.04) and six months (OR 2.20, CI(95) 1.04-4.65). Detection probabilities are estimated at p≈0.40-0.50 for baited and at just p≈0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI(95) 4.44-34.10; p≈0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps. Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI(95) 16-40) after three and 20% (CI(95) 11-34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T. infestans surveillance and control program management.
    PLoS Neglected Tropical Diseases 09/2012; 6(9):e1822. · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies.
    PLoS Neglected Tropical Diseases 06/2011; 5(6):e1207. · 4.57 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Adult triatomines occasionally fly into artificially lit premises in Amazonia. This can result in Trypanosoma cruzi transmission to humans either by direct contact or via foodstuff contamination, but the frequency of such behaviour has not been quantified. To address this issue, a light-trap was set 45 m above ground in primary rainforest near Manaus, state of Amazonas, Brazil and operated monthly for three consecutive nights over the course of one year (432 trap-hours). The most commonly caught reduviids were triatomines, including 38 Panstrongylus geniculatus, nine Panstrongylus lignarius, three Panstrongylus rufotuberculatus, five Rhodnius robustus, two Rhodnius pictipes, one Rhodnius amazonicus and 17 Eratyrus mucronatus. Males were collected more frequently than females. The only month without any catches was May. Attraction of most of the known local T. cruzi vectors to artificial light sources is common and year-round in the Amazon rainforest, implying that they may often invade premises built near forest edges and thus become involved in disease transmission. Consequently, effective Chagas disease prevention in Amazonia will require integrating entomological surveillance with the currently used epidemiological surveillance.
    Memórias do Instituto Oswaldo Cruz 12/2010; 105(8):1061-4. · 1.36 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We reanalyzed a dataset consisting of approximately 10,700 crepuscular and night-biting female mosquitoes (Culicidae) collected over 12 mo in the canopy and understorey of primary Amazonian rain forest. We investigate whether vertical habitat stratification and rainfall modified major ecological parameters of this mosquito ensemble, combining descriptive and hypothesis-testing statistics with species richness and diversity metrics in the analyses. A total of 31 species was recorded. Contrary to expectations, the host-seeking mosquito fauna was less diverse in the forest canopy than in the understorey. In particular, species diversity and evenness were higher in understorey samples, whereas species richness estimates were similar in both habitats. Only two out of 12 species tested for vertical stratification were clearly acrodendrophilic, and five preferred understorey habitats. The mosquito fauna was more diverse in the rainy than in the dry season. We propose the hypothesis that female mosquito density and host defensive behavior may promote host seeking in nonpreferred habitats by acrodendrophilic mosquito species. These results may be particularly relevant for understanding the dynamics of Plasmodium malariae/brasilianum and arboviral infections in Amazonian forested landscapes.
    Journal of Medical Entomology 03/2010; 47(2):121-8. · 1.86 Impact Factor
  • Fernando Abad-Franch, Walter S Santos, Christopher J Schofield
    [show abstract] [hide abstract]
    ABSTRACT: We present an overview of the two main strategies for the primary (vector control) and secondary (patient care) prevention of Chagas disease (CD). We identify major advances, knowledge gaps, and key research needs in both areas. Improved specific chemotherapy, including more practical formulations (e.g., paediatric) or combinations of existing drugs, and a better understanding of pathogenesis, including the relative weights of parasite and host genetic makeup, are clearly needed. Regarding CD vectors, we find that only about 10-20% of published papers on triatomines deal directly with disease control. We pinpoint the pitfalls of the current consensus on triatomine systematics, particularly within the Triatomini, and suggest how some straightforward sampling and analytical strategies would improve research on vector ecology, naturally leading to sounder control-surveillance schemes. We conclude that sustained research on CD prevention is still crucial. In the past, it provided not only the know-how, but also the critical mass of scientists needed to foster and consolidate CD prevention programmes; in the future, both patient care and long-term vector control would nonetheless benefit from more sharply focused, problem-oriented research.
    Acta tropica 03/2010; 115(1-2):44-54. · 2.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40-60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher ( approximately 0.55 on average) in the richest-soil region than elsewhere ( approximately 0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies.
    PLoS Neglected Tropical Diseases 01/2010; 4(3):e620. · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Chagas disease incidence has sharply declined over the last decade. Long-term disease control will, however, require extensive, longitudinal surveillance systems capable of detecting (and dealing with) reinvasion-reinfestation of insecticide-treated dwellings by non-domiciliated triatomines. Sound surveillance design calls for reliable data on vector ecology, and these data must cover different spatial scales. We conducted a multi-scale assessment of ecological and evolutionary trends in members of the tribe Rhodniini, including (i) a macroscale analysis of Rhodniini species richness and composition patterns across the Americas, and (ii) a detailed, mesoscale case-study of ecological and behavioural trends in Rhodnius neglectus and R. nasutus. Our macroscale overview provides some comprehensive insights about key mechanisms/processes probably underlying ecological and genetic diversification in the Rhodniini. These insights translate into a series of testable hypotheses about current species distributions and their likely causes. At the landscape scale, we used geometric morphometrics to identify dubious specimens as either R. neglectus or R. nasutus (two near-sibling species), and studied palm tree populations of these two vector taxa in five geographical areas. The data suggest that deforestation and the associated loss of habitat and host diversity might increase the frequency of vector-human contact (and perhaps Trypanosoma cruzi infection rates in vectors). Surveillance in central-northeastern Brazil should prioritise deforested landscapes where large palm trees (e.g., Attalea, Mauritia, Copernicia, Acrocomia or Syagrus) occur near houses. We anticipate that, by helping define the distribution patterns and ecological preferences of each species, multi-scale research will significantly strengthen vector surveillance systems across Latin America.
    Acta tropica 07/2008; 110(2-3):159-77. · 2.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Sylvatic triatomines of the genus Rhodnius commonly fly into houses in Latin America, maintaining the risk of Chagas disease transmission in spite of control efforts. In the recent past, adult bugs collected inside houses in central Brazil were identified as R. prolixus, a primary disease vector whose natural geographical range excludes this region. Three nearly sibling species (R. neglectus, R. nasutus, and R. robustus), secondary vectors with limited epidemiological significance, occur naturally south of the Brazilian Amazon. The specific status of Rhodnius specimens found inside houses in central Brazil is therefore an epidemiologically important (and still debated) issue. We used wing and head geometric morphometrics to investigate the taxonomic status of 230 adult specimens representing all four 'R. prolixus group' species (19 populations from palm trees, domiciles, and reference laboratory colonies). Discriminant analyses of shape variation allowed for an almost perfect reclassification of individuals to their putative species. Shape patterning revealed no consistent differences between most specimens collected inside houses in central Brazil and R. neglectus, and showed that R. robustus and R. neglectus occur sympatrically (and fly into houses) in southern Amazonia. Furthermore, all Brazilian specimens clearly differed from our reference R. prolixus population. Using geometric morphometrics, we confidently ascribed individual triatomines to their species within the problematic 'R. prolixus group', illustrating the potential value of this approach in entomological surveillance. Our results strongly support the idea that R. neglectus, and not R. prolixus, is the species invading houses in central Brazil.
    Acta Tropica 06/2008; 107(2):90-8. · 2.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Among Chagas disease triatomine vectors, the largest genus, Triatoma, includes species of high public health interest. Triatoma dimidiata, the main vector throughout Central America and up to Ecuador, presents extensive phenotypic, genotypic, and behavioral diversity in sylvatic, peridomestic and domestic habitats, and non-domiciliated populations acting as reinfestation sources. DNA sequence analyses, phylogenetic reconstruction methods, and genetic variation approaches are combined to investigate the haplotype profiling, genetic polymorphism, phylogeography, and evolutionary trends of T. dimidiata and its closest relatives within Triatoma. This is the largest interpopulational analysis performed on a triatomine species so far. Triatomines from Mexico, Guatemala, Honduras, Nicaragua, Panama, Cuba, Colombia, Ecuador, and Brazil were used. Triatoma dimidiata populations follow different evolutionary divergences in which geographical isolation appears to have had an important influence. A southern Mexican-northern Guatemalan ancestral form gave rise to two main clades. One clade remained confined to the Yucatan peninsula and northern parts of Chiapas State, Guatemala, and Honduras, with extant descendants deserving specific status. Within the second clade, extant subspecies diversity was shaped by adaptive radiation derived from Guatemalan ancestral populations. Central American populations correspond to subspecies T. d. dimidiata. A southern spread into Panama and Colombia gave the T. d. capitata forms, and a northwestern spread rising from Guatemala into Mexico gave the T. d. maculipennis forms. Triatoma hegneri appears as a subspecific insular form. The comparison with very numerous Triatoma species allows us to reach highly supported conclusions not only about T. dimidiata, but also on different, important Triatoma species groupings and their evolution. The very large intraspecific genetic variability found in T. dimidiata sensu lato has never been detected in a triatomine species before. The distinction between the five different taxa furnishes a new frame for future analyses of the different vector transmission capacities and epidemiological characteristics of Chagas disease. Results indicate that T. dimidiata will offer problems for control, although dwelling insecticide spraying might be successful against introduced populations in Ecuador.
    PLoS Neglected Tropical Diseases 02/2008; 2(5):e233. · 4.57 Impact Factor
  • Fernando Abad-Franch, Fernando A Monteiro
    [show abstract] [hide abstract]
    ABSTRACT: An ecological-evolutionary classification of Amazonian triatomines is proposed based on a revision of their main contemporary biogeographical patterns. Truly Amazonian triatomines include the Rhodniini, the Cavernicolini, and perhaps Eratyrus and some Bolboderini. The tribe Rhodniini comprises two major lineages (pictipes and robustus). The former gave rise to trans-Andean (pallescens) and Amazonian (pictipes) species groups, while the latter diversified within Amazonia (robustus group) and radiated to neighbouring ecoregions (Orinoco, Cerrado-Caatinga-Chaco, and Atlantic Forest). Three widely distributed Panstrongylus species probably occupied Amazonia secondarily, while a few Triatoma species include Amazonian populations that occur only in the fringes of the region. T. maculata probably represents a vicariant subset isolated from its parental lineage in the Caatinga-Cerrado system when moist forests closed a dry trans-Amazonian corridor. These diverse Amazonian triatomines display different degrees of synanthropism, defining a behavioural gradient from household invasion by adult triatomines to the stable colonisation of artificial structures. Anthropogenic ecological disturbance (driven by deforestation) is probably crucial in the onset of the process, but the fact that only a small fraction of species effectively colonises artificial environments suggests a role for evolution at the end of the gradient. Domestic infestation foci are restricted to drier subregions within Amazonia; thus, populations adapted to extremely humid rainforest microclimates may have limited chances of successfully colonising the slightly drier artificial microenvironments. These observations suggest several research avenues, from the use of climate data to map risk areas to the assessment of the synanthropic potential of individual vector species.
    Memórias do Instituto Oswaldo Cruz 11/2007; 102 Suppl 1:57-70. · 1.36 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The risk that Chagas disease becomes established as a major endemic threat in Amazonia (the world's largest tropical biome, today inhabited by over 30 million people) relates to a complex set of interacting biological and social determinants. These include intense immigration from endemic areas (possibly introducing parasites and vectors), extensive landscape transformation with uncontrolled deforestation, and the great diversity of wild Trypanosoma cruzi reservoir hosts and vectors (25 species in nine genera), which maintain intense sylvatic transmission cycles. Invasion of houses by adventitious vectors (with infection rates > 60%) is common, and focal adaptation of native triatomines to artificial structures has been reported. Both acute (approximately 500) and chronic cases of autochthonous human Chagas disease have been documented beyond doubt in the region. Continuous, low-intensity transmission seems to occur throughout the Amazon, and generates a hypoendemic pattern with seropositivity rates of approximately 1-3%. Discrete foci also exist in which transmission is more intense (e.g., in localized outbreaks probably linked to oral transmission) and prevalence rates higher. Early detection-treatment of acute cases is crucial for avoiding further dispersion of endemic transmission of Chagas disease in Amazonia, and will require the involvement of malaria control and primary health care systems. Comprehensive eco-epidemiological research, including prevalence surveys or the characterization of transmission dynamics in different ecological settings, is still needed. The International Initiative for Chagas Disease Surveillance and Prevention in the Amazon provides the framework for building up the political and scientific cooperation networks required to confront the challenge of preventing Chagas disease in Amazonia.
    Memórias do Instituto Oswaldo Cruz 10/2007; 102 Suppl 1:47-56. · 1.36 Impact Factor

Publication Stats

513 Citations
400 Downloads
2k Views
120.89 Total Impact Points

Institutions

  • 2013
    • Universidade do Estado do Amazonas
      Manáos, Amazonas, Brazil
    • Instituto Nacional de Pesquisas da Amazônia
      Manáos, Amazonas, Brazil
  • 2012
    • The Commonwealth Scientific and Industrial Research Organisation
      Canberra, Australian Capital Territory, Australia
  • 2007–2011
    • Fundação Oswaldo Cruz
      Rio de Janeiro, Rio de Janeiro, Brazil
  • 2000–2005
    • London School of Hygiene and Tropical Medicine
      • Department of Pathogen Molecular Biology
      London, ENG, United Kingdom