Frank B Jensen

University of Southern Denmark, Odense, South Denmark, Denmark

Are you Frank B Jensen?

Claim your profile

Publications (53)127.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter hibernating and summer active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer active and hibernating bears but their composition in the plasma differed significantly, with a decrease of bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, besides being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the RBCs of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of the glyceraldehyde 3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S-metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.
    Free radical biology & medicine. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Moderate elevations of nitrite and nitric oxide (NO) protect mammalian tissues against ischemia (anoxia)-reperfusion damage by inhibiting mitochondrial electron transport complexes and reducing the formation of reactive oxygen species (ROS) upon reoxygenation. Crucian carp appears to exploit this mechanism by up-regulating nitrite and other nitrite/NO metabolites (S-nitroso and iron-nitrosyl compounds) in several tissues when exposed to anoxia. We investigated whether this is a common strategy amongst anoxia-tolerant vertebrates by evaluating NO metabolites in red-eared slider turtles during long-term (9 days) anoxia and subsequent reoxygenation at low temperature, a situation naturally encountered by turtles in ice-covered ponds. We also measured glutathione in selected tissues and assessed the impact of anoxia on electrolyte status. Anoxia induced major increases in [nitrite] in the heart, pectoral muscle and red blood cells, while [nitrite] was maintained unaltered in brain and liver. Concomitantly, the concentrations of S-nitroso and iron-nitrosyl compounds increased, showing that nitrite was used to produce NO and to S-nitrosate cellular molecules during anoxia. The changes were gradually reversed during reoxygenation (1h and 24h), testifying that the processes were reversible. The increased NO bioavailability occurred in the absence of nitric oxide synthase activity (due to global anoxia) and may involve mobilization of internal/external nitrite reservoirs. Our data supports that anoxic up-regulation of nitrite and other NO metabolites could be a general cytoprotective strategy amongst anoxia-tolerant vertebrates. The possible mechanisms of nitrite-derived NO and S-nitrosation in protecting cells from destructive Ca(2+) influx during anoxia and in limiting ROS formation during reoxygenation are discussed.
    Journal of Experimental Biology 10/2013; · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Turtles of the genus Trachemys show a remarkable ability to survive prolonged anoxia. This is achieved by a strong metabolic depression, redistribution of blood flow and high levels of antioxidant defence. To understand whether nitric oxide (NO), a major regulator of vasodilatation and oxygen consumption, may be involved in the adaptive response of Trachemys to anoxia, we measured NO metabolites (nitrite, S-nitroso, Fe-nitrosyl and N-nitroso compounds) in the plasma and red blood cells of venous and arterial blood of Trachemys scripta turtles during normoxia and after anoxia (3 h) and reoxygenation (30 min) at 21°C, while monitoring blood oxygen content and circulatory parameters. Anoxia caused complete blood oxygen depletion, decrease in heart rate and arterial pressure, and increase in venous pressure, which may enhance heart filling and improve cardiac contractility. Nitrite was present at high, micromolar levels in normoxic blood, as in some other anoxia-tolerant species, without significant arterial-venous differences. Normoxic levels of erythrocyte S-nitroso compounds were within the range found for other vertebrates, despite very high measured thiol content. Fe-nitrosyl and N-nitroso compounds were present at high micromolar levels under normoxia and increased further after anoxia and reoxygenation, suggesting NO generation from nitrite catalysed by deoxygenated haemoglobin, which in turtle had a higher nitrite reductase activity than in hypoxia-intolerant species. Taken together, these data indicate constitutively high circulating levels of NO metabolites and significant increases in blood NO after anoxia and reoxygenation that may contribute to the complex physiological response in the extreme anoxia tolerance of Trachemys turtles.
    Journal of Experimental Biology 08/2012; 215(Pt 15):2560-6. · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Harbor porpoises are active divers that exchange O(2) and CO(2) with the environment during a fast single breath upon surfacing. We investigated blood O(2)-transporting properties, buffer characteristics, Cl(-) transport via the erythrocyte anion exchanger (AE1), circulating nitric oxide metabolites and hemoglobin nitrite reduction in harbor porpoises with the aim to evaluate traits that are adaptive for diving behavior. Blood O(2) affinity was higher in harbor porpoises than in similar sized terrestrial mammals, as supported by our parallel recordings of O(2) equilibria in sheep and pig blood. Further, O(2) affinity tended to increase with increasing body mass. A high O(2) affinity favors O(2) extraction from the lungs, but a normal Bohr effect (ΔlogP(50)/ΔpH=-0.46) gradually lowers O(2) affinity during dives (where CO(2) accumulates) to assist O(2) off-loading to perfused tissues. The true plasma non-bicarbonate buffer value was moderately higher than in terrestrial mammals and increased upon deoxygenation. Plasma bicarbonate was also relatively high, contributing to increase the overall buffer capacity. The apparent Cl(-) permeability of harbor porpoise erythrocytes was similar to the human value at 37°C, showing absence of a comparative increase in the velocity of erythrocyte HCO(-)(3)/Cl(-) exchange to aid CO(2) excretion. The Q(10) for AE1-mediated Cl(-) transport in harbor porpoises was lower than in humans and seemed to match the Q(10) for metabolism (Q(10)≈2). Plasma nitrite, plasma nitrate and hemoglobin-mediated nitrite reduction were elevated compared with mammalian standards, suggesting that increased nitric oxide bioavailability and nitrite-derived nitric oxide could play important roles in diving physiology.
    Journal of Experimental Biology 06/2012; 215(Pt 11):1938-43. · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 mM. Effects of sub-lethal exposures to nitrite (0mM, 1.4mM, and 3.0mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60% of total Hb. Haematocrit and total Hb were unaffected by nitrite. Although the effects of nitrite exposure seemed minor in terms of plasma nitrite and metHb increases, ion balance was strongly affected. In the high exposure group, total osmolality decreased from 320 mOsm to 260 mOsm, and plasma sodium from 150 mM to 120 mM, while plasma chloride fell from 105 mM to 60mM and plasma bicarbonate rose from 12 mM in controls to 20mM in exposed fish. The extreme changes in ion balance in C. striata are different from the response reported in other fish, and further studies are needed to investigate the mechanism behind the observed changes in regulation.
    Aquatic toxicology (Amsterdam, Netherlands) 03/2012; 118-119:48-53. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 01/2012; 162(1):1-6. · 2.20 Impact Factor
  • Guro K Sandvik, Göran E Nilsson, Frank B Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia tolerance of this fish by measuring NO metabolites in normoxic, anoxic, and reoxygenated crucian carp. We also cloned and sequenced crucian carp NO synthase variants and quantified their mRNA levels in several tissues in normoxia and anoxia. Despite falling levels of blood plasma nitrite, the crucian carp showed massive increases in nitrite, S-nitrosothiols (SNO), and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. NO(2)(-) levels were maintained in anoxic brain, liver, and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that NO(2)(-) is shifted into the tissues where it acts as NO donor during anoxia, inducing cytoprotection under anoxia/reoxygenation. This can be especially important in the crucian carp heart, which maintains output in anoxia. NO(2)(-) is currently tested as a therapeutic drug against reperfusion damage of ischemic hearts, and the present study provides evolutionary precedent for such an approach.
    AJP Regulatory Integrative and Comparative Physiology 11/2011; 302(4):R468-77. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.
    Aquatic toxicology (Amsterdam, Netherlands) 07/2011; 104(1-2):86-93. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atlantic salmon (Salmo salar) presmolts, smolts, and postsmolts compensate for a respiratory acidosis associated with 96 h of exposure to hyperoxia (100% O2; hO2), hypercapnia (2% CO2 and 98% air; hCO2), and combined hO2/hCO2 in freshwater (FW) by increasing strong ion difference, predominantly through a reduction in plasma [Cl-] (presumably via branchial Cl-/HCO3- exchange). In smolts, compensation during hO2 or hCO2 occurred within 24 h, whereas that in combined hO2/hCO2 was much slower, resulting in 33% mortality by 96 h. FW hO2 and combined hO2/hCO2 appeared to impair gill function, likely through oxidative cell damage. This resulted in reduced hypoosmoregulatory ability following subsequent transfer to seawater (SW), as indicated by changes in plasma ion levels, osmolality, and muscle water content, resulting in considerable mortalities. Interestingly, FW hCO2 appeared to enhance hypoosmoregulatory ability during subsequent SW transfer. Smolts are often transported from FW to a subsequent SW release site, and these data indicate that care should be taken to minimize the degree of hyperoxia experienced by the smolts. Hypercapnia, which results from metabolic CO2 production and inadequate water aeration, does not impair SW transfer, provided it does not occur in conjunction with hyperoxia.
    Canadian Journal of Fisheries and Aquatic Sciences 04/2011; 57(10):2054-2064. · 2.32 Impact Factor
  • Frank B Jensen, Marie N Hansen
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite is a physiologically important nitric oxide donor at low concentrations but becomes toxic at high concentrations, as develops in freshwater fish exposed to environmental nitrite. We hypothesized that nitrite uptake across the gills differs between normoxic and hypoxic fish and that nitrite accumulation causes excess nitric oxide formation and nitrosative stress. Nitrite and its metabolites were measured via chemiluminescence in normoxic and hypoxic goldfish in control conditions and after 1 day of nitrite exposure. Exposure to nitrite produced much higher nitrite levels in plasma, red blood cells (RBCs) and muscle tissue of normoxic than hypoxic goldfish, suggesting that nitrite uptake was augmented by normoxia in spite of a predictable lower gill surface area. Elevation of nitrite was associated with increased concentrations of S-nitroso, N-nitroso and Fe-nitrosyl compounds in both extracellular and intracellular compartments, revealing nitrosative stress with extensive nitros(yl)ation of thiols, amines and heme groups. The degree of nitrosative stress correlated with nitrite load. Nitrate levels increased in all compartments, reflecting that a significant fraction of the nitrite taken up was converted to non-toxic nitrate. The generation of methemoglobin and nitrosylhemoglobin (assessed by spectral deconvolution) was more pronounced during normoxic nitrite exposure than during hypoxic nitrite exposure, in agreement with the higher nitrite load in normoxic fish. However, at any given nitrite load inside RBCs, the formation of S-nitroso compounds was augmented by hypoxia. We conclude that ambient oxygen conditions have profound influence on branchial nitrite uptake and that nitrosative stress is an integral part of nitrite toxicity at high nitrite concentrations.
    Aquatic toxicology (Amsterdam, Netherlands) 01/2011; 101(2):318-25. · 3.12 Impact Factor
  • Roy E. Weber, Frank B. Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Th e extant lungfish – that comprise the predominantly water-breathing Neoceratodus forsteri from Australia and the obligate air - breathing Protopterus and Lepidosiren from Africa and South America, respectively – face extraordinary variations in exogenous factors (O2 and water availability and temperature) and endogenous constraints (bimodal breathing and estivation in moist or dried mud). These circumstances predictably result in inordinate variations in factors (blood levels of pH, O2 and CO2 tensions, urea and lactate levels and osmolality) that mandatorily affect O2 and CO2 binding by the circulating hemoglobin (Hb). This treatise focuses on the distinctive, compensatory adaptations in the gas-transporting functions of lungfish blood and Hb and the underlying molecular mechanisms that support aerobic metabolism in lungfish under harsh conditions.
    01/2011: pages 283-303; , ISBN: 978-1-57808-431-9
  • Marie N Hansen, Frank B Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO), produced by nitric oxide synthases (NOS enzymes), regulates multiple physiological functions in animals. NO exerts its effects by binding to iron (Fe) of heme groups (exemplified by the activation of soluble guanylyl cyclase) and by S-nitrosylation of proteins - and it is metabolized to nitrite and nitrate. Nitrite is used as a marker for NOS activity but it is also a NO donor that can be activated by various cellular proteins under hypoxic conditions. Here, we report the first systematic study of NO metabolites (nitrite, nitrate, S-nitroso, N-nitroso and Fe-nitrosyl compounds) in multiple tissues of a non-mammalian vertebrate (goldfish) under normoxic and hypoxic conditions. NO metabolites were measured in blood (plasma and red cells) and heart, brain, gill, liver, kidney and skeletal muscle, using highly sensitive reductive chemiluminescence. The severity of the chosen hypoxia levels was assessed from metabolic and respiratory variables. In normoxic goldfish, the concentrations of NO metabolites in plasma and tissues were comparable with values reported in mammals, indicative of similar NOS activity. Exposure to hypoxia [at P(O₂) (partial pressure of O₂) values close to and below the critical P(O₂)] for two days caused large decreases in plasma nitrite and nitrate, which suggests reduced NOS activity and increased nitrite/nitrate utilization or loss. Tissue NO metabolites were largely maintained at their tissue-specific values under hypoxia, pointing at nitrite transfer from extracellular to intracellular compartments and cellular NO generation from nitrite. The data highlights the preference of goldfish to defend intracellular NO homeostasis during hypoxia.
    Journal of Experimental Biology 11/2010; 213(Pt 21):3593-602. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inverse relationship between temperature and hemoglobin-O(2) affinity resulting from the exothermic nature of heme oxygenation favors O(2) unloading from blood to warm, metabolically active tissues. However, this temperature sensitivity is maladaptive, and commonly countered in regional heterotherms, where it may hamper unloading (e.g. in cold extremities of arctic mammals) or increase the diffusive arterio-venous short-circuiting of O(2) (e.g. in counter-current heat exchangers of warm swimming muscles of tuna). We hypothesized analogous blood specializations in heterothermic billfish, whose warm eyes and brains increase the temporal resolution of vision, and measured hemoglobin-O(2) binding properties in three species over a wide pH range, at two temperatures, and in the absence and presence of the major red cell effector, ATP, permitting detailed assessment of overall oxygenation enthalpies (DeltaH') and contributions from oxygenation-linked proton and ATP dissociation. Billfish express multiple isohemoglobins with similar O(2) affinities and pronounced sensitivities to pH and ATP. Compared with the moderate effects associated with proton dissociation upon oxygenation, dissociation of ATP and coupled extra Bohr protons virtually obliterates the temperature sensitivities. At pH 7.4, where this effect is maximal, ATP changes DeltaH' values of blue marlin, striped marlin and shortbill spearfish hemoglobins from -39, -49 and -44 kJ mol(-1) O(2), respectively, to +26, +4 and -7 kJ mol(-1). Thus in addition to allosterically modulating hemoglobin-O(2) affinity, ATP diminishes its temperature sensitivity, reducing deleterious arterio-venous short-circuiting of oxygen in the cranial billfish heat exchangers. The mechanism underlying this reduction in oxygenation enthalpy differs fundamentally from that in tuna, supporting independent evolution of this trait in these scombroid lineages.
    Journal of Experimental Biology 05/2010; 213(Pt 9):1579-85. · 3.24 Impact Factor
  • Frank B Jensen, Sabina Rohde
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
    AJP Regulatory Integrative and Comparative Physiology 04/2010; 298(4):R972-82. · 3.28 Impact Factor
  • Frank B Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O(2) between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric interactions between Hb ligand-binding sites, and an adjustable intracellular chemical environment that allows fine-tuning of Hb O(2) affinity. Secondly, RBCs may sense tissue O(2) requirements via their degree of deoxygenation when they travel through the microcirculation and release vasodilatory compounds that enhance blood flow in hypoxic tissues. This latter function could be important in matching tissue O(2) delivery with local O(2) demand. Three main mechanisms by which RBCs can regulate their own distribution in the microcirculation have been proposed. These are: (1) deoxygenation-dependent release of ATP from RBCs, which stimulates production of nitric oxide (NO) and other vasodilators in the endothelium; (2) release of vasoactive NO from S-nitroso-Hb upon deoxygenation; and (3) reduction of naturally occurring nitrite to vasoactive NO by deoxygenated Hb. This Commentary inspects all three hypotheses with regard to their mechanisms, experimental evidence in their support and details that remain unresolved. The prime focus is on human/mammalian models, where most evidence for a role of erythrocyte ATP and NO release in blood flow regulation have accumulated. Information from other vertebrate groups is integrated in the analysis and used to discuss the evolutionary origin and general relevance of each hypothesis.
    Journal of Experimental Biology 11/2009; 212(Pt 21):3387-93. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in the reaction induces vasodilation in aortic rings. This reaction occurs under normoxic and hypoxic conditions and in various tissues at physiological levels of CA and nitrite. Furthermore, two specific inhibitors of the CO2 hydration, dorzolamide and acetazolamide, increase the CA-catalyzed production of vasoactive NO from nitrite. This enhancing effect may explain the known vasodilating effects of these drugs and indicates that CO2 and nitrite bind differently to the enzyme active site. Kinetic analyses show a higher reaction rate at high pH, suggesting that anionic nitrite participates more effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between blood flow and metabolic activity in tissues, as occurring for instance in active areas of the brain.
    AJP Heart and Circulatory Physiology 10/2009; 297(6):H2068-74. · 3.63 Impact Factor
  • Source
    Frank B. Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation and cytoprotection from a comparative viewpoint, with focus on mammals and fish. Constitutive nitric oxide synthase activity results in similar plasma nitrite levels in mammals and fish, but nitrite can also be taken up across the gills in freshwater fish, which has implications for nitrite/NO levels and nitrite utilization in hypoxia. The nitrite reductase activity of deoxyhemoglobin is a major mechanism of NO generation from nitrite and may be involved in hypoxic vasodilation. Nitrite is readily transported across the erythrocyte membrane, and the transport is enhanced at low O2 saturation in some species. Also, nitrite preferentially reacts with deoxyhemoglobin rather than oxyhemoglobin at intermediate O2 saturations. The hemoglobin nitrite reductase activity depends on heme O2 affinity and redox potential and shows species differences within mammals and fish. The NO forming capacity is elevated in hypoxia-tolerant species. Nitrite-induced vasodilation is well documented, and many studies support a role of erythrocyte/hemoglobin-derived NO. Vasodilation can, however, also originate from nitrite reduction within the vessel wall, and at present there is no consensus regarding the relative importance of competing mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia–reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full understanding of the physiological role of nitrite.
    Biochimica et Biophysica Acta (BBA) - Bioenergetics. 01/2009;
  • Frank B Jensen, Claudio Agnisola, Ivana Novak
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout heart. Erythrocytes suspended in an albumin-containing saline and equilibrated at physiological Pco2 showed negligible hemolysis (<0.1%), and notably they released small amounts of ATP. The elevation of extracellular [ATP] was higher in the presence of the ectonucleotidase inhibitor ARL 67156 than in its absence, revealing the presence of ectonucleotidase activity. The induction of either a slow (minutes) or a fast (seconds) decrease in hemoglobin O2 saturation did not lead to additional ATP release. An elevation of Pco(2) was also without influence on erythrocyte ATP release. In the saline-perfused coronary circulation, [ATP] increased as the perfusate moved through the vessels in the presence of ARL 67156. When ATP was added to the inflowing saline, most ATP disappeared during passage of the coronary bed when ARL 67156 was absent but not when it was present. We conclude that rainbow trout erythrocytes and vasculature possess the key elements for ATP signaling, i.e. cellular ATP release and balanced ATP degradation by ectonucleotidases, but that erythrocyte ATP release is not influenced by oxygenation degree. The latter is suggested to be related to the lack of a deoxygenation-dependent interaction of trout hemoglobin with the cytoplasmic domain of band 3.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 12/2008; 152(3):351-6. · 2.20 Impact Factor
  • Frank B Jensen
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction and its autocatalysis are inhibited by nitrosylhemoglobin from the deoxyhemoglobin reaction. The production of NO and nitrosylhemoglobin is faster and higher in carp hemoglobin with high O(2) affinity than in rabbit hemoglobin with lower O(2) affinity, and it correlates inversely with oxygen saturation. In carp, NO formation remains substantial even at high oxygen saturations. When oxygen affinity is decreased by T-state stabilization of carp hemoglobin with ATP, the reaction rates decrease and NO production is lowered, but the deoxyhemoglobin reaction continues to dominate. The data show that the reaction of nitrite with hemoglobin is dynamically influenced by oxygen affinity and the allosteric equilibrium between the T and R states, and that a high O(2) affinity increases the nitrite reductase capability of hemoglobin.
    FEBS Journal 08/2008; 275(13):3375-87. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.
    Journal of Comparative Physiology B 07/2008; 178(7):909-15. · 2.02 Impact Factor

Publication Stats

781 Citations
127.56 Total Impact Points

Institutions

  • 2000–2014
    • University of Southern Denmark
      • Department of Biology
      Odense, South Denmark, Denmark
  • 2011
    • University of Oslo
      • Department of Biosciences
      Oslo, Oslo, Norway
  • 1999–2010
    • Aarhus University
      • Department of Zoophysiology
      Aars, Region North Jutland, Denmark
  • 2005
    • University of Miami
      • Division of Marine Biology & Fisheries
      Coral Gables, FL, United States
  • 2002
    • San Diego State University
      • Department of Biology
      San Diego, CA, United States
    • University of Liverpool
      • School of Biological Sciences
      Liverpool, ENG, United Kingdom
  • 2001
    • King's College London
      Londinium, England, United Kingdom
  • 1996–2000
    • Odense University Hospital
      Odense, South Denmark, Denmark