Esteban J Bontempi

Academy of Sciences of the Czech Republic, Praha, Praha, Czech Republic

Are you Esteban J Bontempi?

Claim your profile

Publications (27)101.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of Trypanosoma brucei. The ablation of TbSPPS gene expression by RNAi increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking the endogenous generation and excretion of UQ9. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the down-regulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug, and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites, strongly suggest that TbSPPS and UQ synthesis were the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.
    Eukaryotic Cell 12/2013; · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferredoxins are highly conserved proteins that function universally as electron transporters. They not only require Fe-S clusters for their own activity, but are also involved in Fe-S formation itself. We identified two homologues of ferredoxin in the genome of the parasitic protist Trypanosoma brucei and named them TbFdxA and TbFdxB. TbFdxA protein, which is homologous to other eukaryotic mitochondrial ferredoxins, is essential in both the procyclic (= insect-transmitted) and bloodstream (mammalian) stage, but is more abundant in the active mitochondrion of the former stage. Depletion of TbFdxA caused disruption of Fe-S cluster biogenesis and lowered the level of intracellular haem. However, TbFdxB, which is present exclusively within kinetoplastid flagellates, was non-essential for the procyclic stage, and double knock-down with TbFdxA showed this was not due to functional redundancy between the two homologues. Heterologous expressions of human orthologues HsFdx1 and HsFdx2 fully rescued the growth and Fe-S-dependent enzymatic activities of TbFdxA knock-down. In both cases, the genuine human import signals allowed efficient import into the T. brucei mitochondrion. Given the huge evolutionary distance between trypanosomes and humans, ferredoxins clearly have ancestral and highly conserved function in eukaryotes and both human orthologues have retained the capacity to participate in Fe-S cluster assembly.
    Molecular Microbiology 05/2013; · 4.96 Impact Factor
  • Source
    De-Hua Lai, Esteban J Bontempi, Julius Lukeš
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyprenyl-diphosphate synthase is a key enzyme in the biosynthesis of ubiquinone, a molecule considered essential for a typical eukaryotic cell. Its orthologue in the American stercorarian flagellate Trypanosoma cruzi, solanesyl diphosphate synthase, has been previously localized into the glycosomes. We wondered whether this unique cellular localization is shared by other trypanosome species. Using digitonin permeabilization, immunofluorescence and in situ tagging techniques, we show that in Trypanosoma brucei, the African salivarian flagellate, the enzyme localizes to the mitochondrion.
    Molecular and Biochemical Parasitology 03/2012; 183(2):189-92. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The completion of the genome sequence of Trypanosoma cruzi has been followed by several studies of protein expression, with the long-term aim to obtain a complete picture of the parasite proteome. We report a proteomic analysis of an organellar cell fraction from T. cruzi CL Brener epimastigotes. A total of 396 proteins were identified by LC-MS/MS. Of these, 138 were annotated as hypothetical in the genome databases and the rest could be assigned to several metabolic and biosynthetic pathways, transport, and structural functions. Comparative analysis with a whole cell proteome study resulted in the validation of the expression of 173 additional proteins. Of these, 38 proteins previously reported in other stages were not found in the only large-scale study of the total epimastigote stage proteome. A selected set of identified proteins was analyzed further to investigate gene copy number, sequence variation, transmembrane domains, and targeting signals. The genes were cloned and the proteins expressed with a c-myc epitope tag in T. cruzi epimastigotes. Immunofluorescence microscopy revealed the localization of these proteins in different cellular compartments such as ER, acidocalcisome, mitochondrion, and putative cytoplasmic transport or delivery vesicles. The results demonstrate that the use of enriched subcellular fractions allows the detection of T. cruzi proteins that are undetected by whole cell proteomic methods.
    Proteomics 08/2008; 8(13):2735-49. · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC(50) values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC(50) value of 0.84 microM, while this compound showed an IC(50) value of 0.49 microM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC(50) values of 4.1 microM and 2.6 microM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 microM and 0.25 microM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.
    Bioorganic & medicinal chemistry 04/2008; 16(6):3283-90. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosomatids are widespread parasites that cause three major tropical diseases. In trypanosomatids, as in most other organisms, acetylation is a common protein modification that is important in multiple, diverse processes. This paper describes a new member of the Trypanosoma cruzi acetyltransferase family. The gene is single copy and orthologs are also present in the other two sequenced trypanosomatids, Trypanosoma brucei and Leishmania major. This protein (TcAT-1) has the essential motifs present in members of the GCN5-related acetyltransferase (GNAT) family, as well as an additional motif also found in some enzymes from plant and animal species. The protein is evolutionarily more closely related to this group of enzymes than to histone acetyltransferases. The native protein has a cytosolic cellular location and is present in all three life-cycle stages of the parasite. The recombinant protein was shown to have autoacetylation enzymatic activity.
    Molecular and Biochemical Parasitology 05/2007; 152(2):123-31. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the cloning of a Trypanosoma cruzi gene encoding a solanesyl-diphosphate synthase, TcSPPS. The amino acid sequence (molecular mass approximately 39 kDa) is homologous to polyprenyl-diphosphate synthases from different organisms, showing the seven conserved motifs and the typical hydrophobic profile. TcSPPS preferred geranylgeranyl diphosphate as the allylic substrate. The final product, as determined by TLC, had nine isoprene units. This suggests that the parasite synthesizes mainly ubiquinone-9 (UQ-9), as described for Trypanosoma brucei and Leishmania major. In fact, that was the length of the ubiquinone extracted from epimastigotes, as determined by high-performance liquid chromatography. Expression of TcSPPS was able to complement an Escherichia coli ispB mutant. A punctuated pattern in the cytoplasm of the parasite was detected by immunofluorescence analysis with a specific polyclonal antibody against TcSPPS. An overlapping fluorescence pattern was observed using an antibody directed against the glycosomal marker pyruvate phosphate dikinase, suggesting that this step of the isoprenoid biosynthetic pathway is located in the glycosomes. Co-localization in glycosomes was confirmed by immunogold electron microscopy and subcellular fractionation. Because UQ has a central role in energy production and in reoxidation of reduction equivalents, TcSPPS is promising as a new chemotherapeutic target.
    Journal of Biological Chemistry 01/2007; 281(51):39339-48. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Tyrosine aminotransferase purified from epimastigotes of Trypanosoma cruzi displays an additional activity of alanine aminotransferase, absent in all other tyrosine aminotransferases characterized so far. Since the parasite's genome contains a high number of copies of the tyrosine aminotransferase gene, we could not rule out the possibility that two very similar proteins, with changed specificity due to a few amino acid substitutions, might be responsible for the two activities. We have now expressed in Escherichia coli a recombinant tyrosine aminotransferase as a fusion protein with glutathione S-trans-ferase. The purified fusion protein, intact or after thrombin cleavage, displays tyrosine aminotransferase and alanine aminotransferase activities with apparent Km values similar to those for the natural enzyme, thus proving that they belong to the same protein.
    FEMS Microbiology Letters 01/2006; 133(1‐2):17 - 20. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complete sequence and genomic characterization of the tyrosine aminotransferase (TAT) gene from Trypanosoma rangeli is reported. The gene was found to be organized in a tandem multicopy gene array. A homologous mRNA species (2.5 kb) was identified in the epimastigote form of the parasite. From the deduced amino acid sequence, the gene encodes a protein of 420 amino acids with a predicted molecular mass of 46.4 kDa and a theoretical pI of 6.23. A high sequence identity was found with the Trypanosoma cruzi, human and rat enzymes. All the essential residues for TAT enzymatic activity are conserved, as well as a pyridoxal-phosphate attachment site typical of class-I aminotransferases. The recombinant enzyme was recognized by a monoclonal antibody against the T. cruzi enzyme. Additionally, the recombinant protein showed enzymatic activity when incubated with L-tyrosine and 2-oxoglutaric acid as substrates.
    FEMS Microbiology Letters 01/2006; 189(2):253 - 257. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Less toxic drugs are needed to combat the human parasite Trypanosoma cruzi (Chagas's disease). One novel target for antitrypanosomal drug design is farnesyltransferase. Several farnesyltransferase inhibitors based on the benzophenone scaffold were assayed in vitro and in vivo with the parasite. The common structural feature of all inhibitors is an amino function which can be protonated. Best in vitro activity (LC50 values 1 and 10 nM, respectively) was recorded for the R-phenylalanine derivative 4a and for the N-propylpiperazinyl derivative 2f. These inhibitors showed no cytotoxicity to cells. When tested in vivo, the survival rates of infected animals receiving the inhibitors at 7 mg/kg body weight/day were 80 and 60% at day 115 postinfection, respectively.
    Journal of Medicinal Chemistry 12/2005; 48(23):7186-91. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
    Science 07/2005; 309(5733):409-15. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trypanosomatid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are related human pathogens that cause markedly distinct diseases. Using information from genome sequencing projects currently underway, we have compared the sequences of large chromosomal fragments from each species. Despite high levels of divergence at the sequence level, these three species exhibit a striking conservation of gene order, suggesting that selection has maintained gene order among the trypanosomatids over hundreds of millions of years of evolution. The few sites of genome rearrangement between these species are marked by the presence of retrotransposon-like elements, suggesting that retrotransposons may have played an important role in shaping trypanosomatid genome organization. A degenerate retroelement was identified in L. major by examining the regions near breakage points of the synteny. This is the first such element found in L. major suggesting that retroelements were found in the common ancestor of all three species.
    Molecular and Biochemical Parasitology 05/2004; 134(2):183-91. · 2.73 Impact Factor
  • Source
    Molecular and Biochemical Parasitology 06/2002; 121(2):283-6. · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immunosuppressive drug cyclosporin A (CsA) has shown antiparasitic activity against several protozoans and helminths, when complexed to proteins called cyclophilins (CyPs). In this paper, the molecular characterisation of one member of the CyP family in Trypanosoma cruzi is reported. TcCyP19 gene proved to be highly conserved compared to CyPs from other organisms and was highly homologous to a Trypanosoma brucei brucei CyPA. This gene was expressed in Escherichia coli and the purified recombinant protein exhibited a peptidyl prolyl cis-trans isomerase activity that was inhibited by CsA (IC(50) = 18.4 + /-0.8 nM). The TcCyP19 gene was located on two chromosomal bands in T. cruzi CL Brener clone.
    FEMS Microbiology Letters 07/2001; 200(1):43-7. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complete sequence and genomic characterization of the tyrosine aminotransferase (TAT) gene from Trypanosoma rangeli is reported. The gene was found to be organized in a tandem multicopy gene array. A homologous mRNA species (2.5 kb) was identified in the epimastigote form of the parasite. From the deduced amino acid sequence, the gene encodes a protein of 420 amino acids with a predicted molecular mass of 46.4 kDa and a theoretical pI of 6.23. A high sequence identity was found with the Trypanosoma cruzi, human and rat enzymes. All the essential residues for TAT enzymatic activity are conserved, as well as a pyridoxal-phosphate attachment site typical of class-I aminotransferases. The recombinant enzyme was recognized by a monoclonal antibody against the T. cruzi enzyme. Additionally, the recombinant protein showed enzymatic activity when incubated with L-tyrosine and 2-oxoglutaric acid as substrates.
    FEMS Microbiology Letters 09/2000; 189(2):253-7. · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30–66, 114–150, 181–217 and 247–283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host.
    Molecular and Biochemical Parasitology 05/2000; · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genes encoding a 29-kDa flagellar calcium-binding protein (F29) in Trypanosoma cruzi, strongly homologous to EF-hand calcium-binding protein-encoding genes previously reported in this parasite, were isolated by immunoscreening. F29 is encoded by a number of very similar genes, highly conserved among different T. cruzi isolates. The genes are located on a pair of homologous chromosomes, arranged in one or two clusters of tandem repeats. PCR amplification of Trypanosoma rangeli genomic DNA, using primers derived from the T. cruzi F29 sequence made it possible to isolate the homologous gene in T. rangeli, encoding a 23-kDa protein called TrCaBP. Gene sequence comparisons showed homology to EF-hand calcium-binding proteins from T. cruzi (82.8%), Trypanosoma brucei brucei (60.2%), and Entamoeba histolytica (28.4%). Northern blot analysis revealed that the TrCaBP gene is expressed in T. rangeli as a polyadenylated transcript. The TrCaBP-encoding genes are present in at least 20 copies per cell, organized in tandem arrays, on large T. rangeli chromosomes in some isolates and on two smaller ones in others. This gene, however, seems to be absent from Leishmania.
    Experimental Parasitology 01/1997; 84(3):387-99. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine aminotransferase purified from epimastigotes of Trypanosoma cruzi displays an additional activity of alanine aminotransferase, absent in all other tyrosine aminotransferases characterized so far. Since the parasite's genome contains a high number of copies of the tyrosine aminotransferase gene, we could not rule out the possibility that two very similar proteins, with changed specificity due to a few amino acid substitutions, might be responsible for the two activities. We have now expressed in Escherichia coli a recombinant tyrosine aminotransferase as a fusion protein with glutathione S-transferase. The purified fusion protein, intact or after thrombin cleavage, displays tyrosine aminotransferase and alanine aminotransferase activities with apparent Km values similar to those for the natural enzyme, thus proving that they belong to the same protein.
    FEMS Microbiology Letters 12/1995; 133(1-2):17-20. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the chronic stage of Chagas disease a 160 kDa antigen appears in the blood of patients and remains detectable many years after the onset of the disease. This antigen is secreted by the trypomastigote form of the parasite while it is undetectable in the epimastigote form. We report here that the chronic 160 kDa exoantigen is encoded by a gene family (CEA 160 family). We describe the cloning and partial nucleotide sequence of a gene (CEA 160-1) belonging to the CEA160 family. Comparison of the gene sequence with other sequences present in the databases revealed homologies with several Trypanosoma cruzi surface antigens. Highest amino acid identity (59%) was with members of a family containing epitopes that mimic nervous tissues (Van Voorhis et al. 1993). Another related group (18-22% amino acid identity) comprises proteins of 85 or 160 kDa sharing an amino acid motif that is conserved among bacterial neuraminidases (Fouts et al. 1991; Pollevick et al. 1991; Kahn et al. 1991; Takle & Cross, 1991; Franco et al. 1993). The amino acid identities with the different antigens were not homogeneously distributed. Regions of higher identity (40-60%) were grouped in the central region of each protein.
    Parasitology 02/1995; 110 ( Pt 1):61-9. · 2.36 Impact Factor
  • Molecular and Biochemical Parasitology 08/1994; 66(1):147-51. · 2.73 Impact Factor

Publication Stats

920 Citations
101.11 Total Impact Points

Institutions

  • 2013
    • Academy of Sciences of the Czech Republic
      • Biology Centre
      Praha, Praha, Czech Republic
  • 2008
    • University of Georgia
      • Center for Tropical and Emerging Global Diseases
      Athens, GA, United States
  • 2004–2008
    • Karolinska Institutet
      • Institutionen för cell- och molekulärbiologi
      Solna, Stockholm, Sweden
  • 2007
    • Administración Nacional de Laboratorios e Institutos de Salud (Argentina)
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2005
    • Biomedical Research Institute, Rockville
      Maryland, United States
  • 1997
    • Buenos Aires Institute of Neuroscience
      Buenos Aires, Buenos Aires F.D., Argentina
    • Instituto Evandro Chagas
      Ananindeua, Pará, Brazil