D Lacey

Amgen, Thousand Oaks, California, United States

Are you D Lacey?

Claim your profile

Publications (15)95.05 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal anabolism with PTH is achieved through daily injections that result in brief exposure to the peptide. We hypothesized that similar anabolic effects could be achieved with less frequent but more sustained exposures to PTH. A PTH-Fc fusion protein with a longer half-life than PTH(1-34) increased cortical and cancellous BMD and bone strength with once- or twice-weekly injections. The anabolic effects of PTH are currently achieved with, and thought to require, daily injections that result in brief exposure to the peptide. We hypothesized that less frequent but more sustained exposures to PTH could also be anabolic for bone, provided that serum levels of PTH were not constant. PTH(1-34) was fused to the Fc fragment of human IgG1 to increase the half-life of PTH. Skeletal anabolism was examined in mice and rats treated once or twice per week with this PTH-Fc fusion protein. PTH-Fc and PTH(1-34) had similar effects on PTH/PTHrP receptor activation, internalization, and signaling in vitro. However, PTH-Fc had a 33-fold longer mean residence time in the circulation of rats compared with that of PTH(1-34). Subcutaneous injection of PTH-Fc once or twice per week resulted in significant increases in bone volume, density, and strength in osteopenic ovariectomized mice and rats. These anabolic effects occurred in association with hypercalcemia and were significantly greater than those achievable with high concentrations of daily PTH(1-34). PTH-Fc also significantly improved cortical bone volume and density under conditions where daily PTH(1-34) did not. Antiresorptive co-therapy with estrogen further enhanced the ability of PTH-Fc to increase bone mass and strength in ovariectomized rats. These results challenge the notion that brief daily exposure to PTH is essential for its anabolic effects on cortical and cancellous bone. PTH-derived molecules with a sustained circulating half-life may represent a powerful and previously undefined anabolic regimen for cortical and cancellous bone.
    Journal of Bone and Mineral Research 11/2007; 22(10):1534-47. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoprotegerin (OPG) acts by neutralizing the receptor activator of nuclear factor-kappaB ligand (RANKL), the primary mediator of osteoclast differentiation, function, and survival. We examined whether OPG could affect the bone loss associated with chronic kidney disease (CKD) in a rodent model of CKD and secondary hyperparathyroidism (SHPT). SHPT was induced in rats by 5/6 nephrectomy (5/6 Nx) and a 1.2% P/0.6% Ca(2+) diet. Starting 1 week after 5/6 Nx, rats were treated with vehicle (veh) or OPG-Fc (3 mg/kg, intravenously) every 2 weeks for 9 weeks. At baseline, 3, 6, and 9 weeks, blood was taken and bone mineral density (BMD) and bone mineral content (BMC) were assessed by dual-energy X-ray absorptiometry. Serum parathyroid hormone (sPTH) levels reached 912 pg/ml in 5/6 Nx rats vs. 97 pg/ml in shams at 9 weeks. OPG-Fc had no effect on sPTH or Ca(2+) levels throughout the 9-week study, indicating that SHPT was a renal effect independent of bone changes. At 3 weeks, 5/6 Nx-veh rats had osteopenia compared with sham-veh rats and 5/6 Nx-OPG-Fc rats had significantly higher percent changes in whole-body BMC, leg BMD, and lumbar BMD versus 5/6 Nx-veh rats. By 6-9 weeks, elevated sPTH was associated with reversal of bone loss and osteitis fibrosa in the proximal tibial metaphysis. OPG-Fc decreased this sPTH-driven high bone turnover, resulting in augmented thickness of proximal tibial trabeculae in 5/6 Nx rats. Thus, RANKL inhibition with OPG-Fc can block the deleterious effects of continuously elevated sPTH on bone, suggesting that RANKL may be an important therapeutic target for protecting bone in patients with CKD and SHPT.
    Calcified Tissue International 02/2006; 78(1):35-44. · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcitriol treatment of secondary hyperparathyroidism (HPT) in chronic kidney disease (CKD) patients can lead to increased serum calcium and phosphorus, which have been associated as risk factors for vascular calcification. Cinacalcet HCl (Sensipar/Mimpara) {(alphaR)-(-)-alpha-methyl-N-[3-[3-(trifluoromethylphenyl)propyl]-1-napthalenemethanamine hydrochloride} lowers serum parathyroid hormone (PTH), calcium, phosphorus and calcium-phosphorous (CaxP) product in stage 5 CKD dialysis patients; however, its effects on vascular calcification are unknown. Cinacalcet HCl (10 or 1 mg/kg, p.o. gavage), 1,25-dihydroxyvitamin D(3) (0.1 microg, s.c, calcitriol) or the combination was administered daily for 26 days in a rat model of secondary HPT [5/6 nephrectomy]. After dosing, aortic calcification was determined using the von Kossa staining method. Serum PTH and blood chemistries were determined on days 0, 26 and 0, 14, 26, respectively, prior to and after dosing. Calcitriol-treated rats had moderate to marked aortic calcification, whereas no significant calcification was observed in vehicle- or cinacalcet HCl-only treated groups. Co-administration of cinacalcet HCl with calcitriol did not attenuate the calcitriol-mediated increase in CaxP product or calcitriol-mediated aortic calcification. Both calcitriol and cinacalcet HCl therapy significantly reduced serum PTH levels. Calcitriol significantly elevated serum calcium, serum phosphorous and CaxP product above pretreatment levels, or those seen with vehicle or cinacalcet HCl. Cinacalcet HCl (10 or 1 mg/kg) decreased serum ionized calcium and decreased calcitriol-induced hypercalcaemia. Cinacalcet HCl and calcitriol both effectively reduce PTH, albeit via different mechanisms, but unlike calcitriol, cinacalcet HCl did not produce hypercalcaemia, an increased CaxP product or vascular calcification.
    Nephrology Dialysis Transplantation 08/2005; 20(7):1370-7. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secondary hyperparathyroidism (HPT) in chronic kidney disease (CKD) is a physiologic response to kidney failure characterized by elevated serum parathyroid hormone (PTH) levels and parathyroid gland enlargement. Calcimimetic agents acting through allosteric modification of the calcium-sensing receptor (CaR) can attenuate parathyroid hyperplasia in rats with secondary HPT. The present study explores the effects of the calcimimetic cinacalcet HCl on parathyroid hyperplasia, apoptosis, and PTH secretion in a rat model of secondary HPT. Cinacalcet HCl was gavaged daily (1, 5, or 10 mg/kg) for 4 weeks starting 6 weeks post-5/6 nephrectomy. After dosing, hyperplasia was determined using parathyroid weight and proliferating cell nuclear antigen (PCNA) immunochemistry. Apoptosis was determined using in situ techniques. Serum PTH((1-34)) and blood chemistries were determined throughout the course of the study. Administration of cinacalcet HCl (5 or 10 mg/kg) significantly reduced the number of PCNA-positive cells and decreased parathyroid weight compared with vehicle-treated 5/6 nephrectomized rats. There was no difference in apoptosis from cinacalcet HCl-treated or vehicle-treated animals. Serum PTH and blood ionized calcium levels decreased in cinacalcet HCl-treated animals compared with vehicle-treated controls. The results confirm previous work demonstrating that calcimimetic agents attenuate the progression of parathyroid hyperplasia in subtotally nephrectomized rats, extending earlier observations to now include cinacalcet HCl. These results support a role for the CaR in regulating parathyroid cell proliferation. Therefore, cinacalcet HCl may represent a novel therapy for improving the management of secondary HPT.
    Kidney International 03/2005; 67(2):467-76. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcimimetic compounds, which activate the parathyroid cell Ca(2+) receptor (CaR) and inhibit parathyroid hormone (PTH) secretion, are under experimental study as a treatment for hyperparathyroidism. This report describes the salient pharmacodynamic properties, using several test systems, of a new calcimimetic compound, cinacalcet HCl. Cinacalcet HCl increased the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) in human embryonic kidney 293 cells expressing the human parathyroid CaR. Cinacalcet HCl (EC(50) = 51 nM) in the presence of 0.5 mM extracellular Ca(2+) elicited increases in [Ca(2+)](i) in a dose- and calcium-dependent manner. Similarly, in the presence of 0.5 mM extracellular Ca(2+), cinacalcet HCl (IC(50) = 28 nM) produced a concentration-dependent decrease in PTH secretion from cultured bovine parathyroid cells. Using rat medullary thyroid carcinoma 6-23 cells expressing the CaR, cinacalcet HCl (EC(50) = 34 nM) produced a concentration-dependent increase in calcitonin secretion. In vivo studies in rats demonstrated cinacalcet HCl is orally bioavailable and displays approximately linear pharmacokinetics over the dose range of 1 to 36 mg/kg. Furthermore, this compound suppressed serum PTH and blood-ionized Ca(2+) levels and increased serum calcitonin levels in a dose-dependent manner. Cinacalcet was about 30-fold more potent at lowering serum levels of PTH than it was at increasing serum calcitonin levels. The S-enantiomer of cinacalcet (S-AMG 073) was at least 75-fold less active in these assay systems. The present findings provide compelling evidence that cinacalcet HCl is a potent and stereoselective activator of the parathyroid CaR and, as such, might be beneficial in the treatment of hyperparathyroidism.
    Journal of Pharmacology and Experimental Therapeutics 03/2004; 308(2):627-35. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.
    Journal of Applied Physiology 12/2003; 95(6):2462-70. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoprotegerin (OPG) is a naturally occurring negative regulator of osteoclast differentiation, activation, and survival. We created a recombinant form of human OPG (rhOPG), with a sustained serum half-life, to achieve prolonged antiresorptive activity. This study describes the rapid and sustained antiresorptive effects that are achieved with a single treatment with rhOPG. Male Sprague-Dawley rats (10 weeks old) were given a single bolus intravenous injection of vehicle (PBS) or rhOPG (5 mg/kg). PBS- and rhOPG-treated rats (n = 6/group) were killed at 0, 0.5, 1, 2, 5, 10, 20, and 30 days post-treatment. rhOPG-treated rats were compared with their age-matched controls. The main pharmacologic effect of rhOPG was a rapid (24 h) reduction in osteoclast surface in the tibia, which reached a nadir on days 5 and 10 (95% reduction vs. vehicle controls). Osteoclast surface remained significantly reduced 30 days after the single treatment with rhOPG. Tibial cancellous bone volume was significantly increased within 5 days of rhOPG treatment (23%) and reached a peak increase of 58% on day 30. Femoral bone mineral density was significantly increased in rhOPG-treated rats on days 10 and 20. Pharmacokinetic analysis revealed that serum concentrations of rhOPG remained at measurable levels throughout the 30-day study. These data show that a single intravenous injection of rhOPG in young growing rats causes significant gains in bone volume and density, which are associated with rapid and sustained suppression of osteoclastic bone resorption.
    Journal of Bone and Mineral Research 06/2003; 18(5):852-8. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined whether the calcium-sensing receptor (CaR) is expressed in normal adult human osteoblastic and osteoclastic cells in culture, and whether the calcimimetic, cinacalcet HCl (AMG 073), potentiates the effects of calcium (via CaR, or some other receptor/mechanism). When mouse or human osteoblastic cells were treated with higher concentrations of calcium (6.6 or 8.6 mM in alpha-MEM/10% FBS) than present in control cultures (1.6 mM), the previously well-documented increase in cell number was demonstrated. Cinacalcet HCl affected cell proliferation of CHO cells transfected with CaR, dose dependently, but had no effect on human or mouse osteoblastic cell proliferation in calcium-containing medium (1.6 or 8.6 mM). To test cinacalcet HCl and calcium on osteoclastic cells, peripheral blood mononuclear cells were cultured in medium containing RANK ligand and M-CSF, supplemented with calcium, and/or cinacalcet HCl. Tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells on plastic or bone were then counted at 11 and 21 days, respectively. Calcium (greater than 6.0 mM) inhibited osteoclast formation, but cinacalcet HCl (30-1000 nM) had no effect on osteoclastic formation or resorption in the presence of calcium (1.6 or 6.1 mM). RT-PCR did not detect CaR in human, rat, or mouse primary osteoblastic cells and cell lines or osteoclastic cells. In conclusion, these studies indicate that the calcium-induced increase in osteoblastic cell number, and the decrease in formation/function of osteoclastic cells, involves a mechanism or receptor other than CaR. In addition, the calcimimetic agent did not potentiate the effects of calcium on normal adult human bone cells in vitro.
    Critical Reviews in Eukaryotic Gene Expression 02/2003; 13(2-4):89-106. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TALL-1/Blys/BAFF is a member of the tumor necrosis factor (TNF) ligand superfamily that is functionally involved in B cell proliferation. Here, we describe B cell hyperplasia and autoimmune lupus-like changes in transgenic mice expressing TALL-1 under the control of a beta-actin promoter. The TALL-1 transgenic mice showed severe enlargement of spleen, lymph nodes, and Peyer's patches because of an increased number of B220+ cells. The transgenic mice also had hypergammaglobulinemia contributed by elevations of serum IgM, IgG, IgA, and IgE. In addition, a phenotype similar to autoimmune lupus-like disease was also seen in TALL-1 transgenic mice, characterized by the presence of autoantibodies to nuclear antigens and immune complex deposits in the kidney. Prolonged survival and hyperactivity of transgenic B cells may contribute to the autoimmune lupus-like phenotype in these animals. Our studies further confirm TALL-1 as a stimulator of B cells that affect Ig production. Thus, TALL-1 may be a primary mediator in B cell-associated autoimmune diseases.
    Proceedings of the National Academy of Sciences 04/2000; 97(7):3370-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TALL-1/Blys/BAFF is a member of the tumor necrosis factor (TNF) ligand superfamily that is functionally involved in B cell proliferation. Here, we describe B cell hyperplasia and autoimmune lupus-like changes in transgenic mice expressing TALL-1 under the control of a β-actin promoter. The TALL-1 transgenic mice showed severe enlargement of spleen, lymph nodes, and Peyer's patches because of an increased number of B220+ cells. The transgenic mice also had hypergammaglobulinemia contributed by elevations of serum IgM, IgG, IgA, and IgE. In addition, a phenotype similar to autoimmune lupus-like disease was also seen in TALL-1 transgenic mice, characterized by the presence of autoantibodies to nuclear antigens and immune complex deposits in the kidney. Prolonged survival and hyperactivity of transgenic B cells may contribute to the autoimmune lupus-like phenotype in these animals. Our studies further confirm TALL-1 as a stimulator of B cells that affect Ig production. Thus, TALL-1 may be a primary mediator in B cell-associated autoimmune diseases.
    Proceedings of the National Academy of Sciences 03/2000; 97(7):3370-3375. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of chronic expression of flt3 ligand (FL) on in vivo hematopoiesis was studied. Retroviral vector-mediated gene transfer was used in a mouse model of bone marrow transplantation to enforce expression of mouse FL cDNA in hematopoietic tissues. As early as 2 weeks posttransplantation, peripheral blood white blood cell counts in FL-overexpressing recipients were significantly elevated compared with controls. With the exception of eosinophils, all nucleated cell lineages studied were similarly affected in these animals. Experimental animals also exhibited severe anemia and progressive loss of marrow-derived erythropoiesis. All of the FL-overexpressing animals, but none of the controls, died between 10 and 13 weeks posttransplantation. Upon histological examination, severe splenomegaly was noted, with progressive fibrosis and infiltration by abnormal lymphoreticular cells. Abnormal cell infiltration also occurred in other organ systems, including bone marrow and liver. In situ immunocytochemistry on liver sections showed that the cellular infiltrate was CD3+/NLDC145+/CD11c+, but B220- and F4/80-, suggestive of a mixed infiltrate of dendritic cells and activated T lymphocytes. Infiltration of splenic blood vessel perivascular spaces resulted in vascular compression and eventual occlusion, leading to splenic necrosis consistent with infarction. These results show that FL can affect both myeloid and lymphoid cell lineages in vivo and further demonstrate the potential toxicity of in vivo treatment with FL.
    Blood 08/1997; 90(1):76-84. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that mice induced to overexpress thrombopoietin (TPO) by retroviral-mediated gene transfer into bone marrow (BM) cells develop myelofibrosis and osteosclerosis. It was speculated that these effects were secondary to TPO, resulting from high levels of megakaryocytes and platelets. Also, it was proposed that these mice represent a model for myelofibrosis and osteosclerosis. In this report, we show that levels of both transforming growth factor-beta 1 and platelet-derived growth factor are increased twofold to fivefold in the platelet-poor plasma of TPO overexpressing mice compared with control mice. These data suggest that the increased megakaryocytes produce elevated levels of these cytokines that lead to the pathogenesis of disease. Further, we retransplanted TPO overexpressing mice, at 40 to 42 weeks after primary transplantation, with normal BM cells. After the secondary transplantation, megakaryocytes and platelets returned to normal levels and the myelofibrosis and osteosclerosis were completely corrected. These data extend our initial studies of the effects of overexpression of TPO and show the potential use of this model to explore the underlying cause of myelofibrosis and osteosclerosis and potential treatments for these diseases.
    Blood 08/1996; 88(2):402-9. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Megakaryocyte growth and development factor (MGDF) is a potent inducer of megakaryopoiesis in vitro and thrombopoiesis in vivo. The effects of MGDF appear to be lineage-selective, making this cytokine an ideal candidate for use in alleviating clinically relevant thrombocytopenias. This report describes a murine model of life-threatening thrombocytopenia that results from the combination treatment of carboplatin and sublethal irradiation. Mortality of this regimen is 94% and is associated with widespread internal bleeding. The daily administration of pegylated recombinant human MGDF (PEG-rMGDF) significantly reduced mortality (to < 15%) and ameliorated the depth and duration of thrombocytopenia. The severity of leucopenia and anemia was also reduced, although it was not clear whether these effects were direct. Platelets generated in response to PEG-rMGDF were morphologically indistinguishable from normal platelets. PEG-rMGDF administered in combination with murine granulocyte colony-stimulating factor completely prevented mortality and further reduced leukopenia and thrombocytopenia. These data support the concept that PEG-rMGDF may be useful to treat iatrogenic thrombocytopenias.
    Blood 01/1996; 86(12):4486-92. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Megakaryocyte growth and development factor (MGDF) has recently been identified as a ligand for the c-mpl receptor. Using retroviral-mediated gene transfer, MGDF has been overexpressed in mice to evaluate the systematic effects due to chronic exposure to this growth factor. MGDF overexpressing mice had more rapid platelet recovery than control mice after transplantation. Following this recovery, the platelet levels continued increasing to fourfold to eightfold above normal baseline levels and remained elevated (five-fold above control mice) in these animals, which are alive and well at more than 4 months posttransplantation. Increased megakaryocyte numbers were detected in a number of organs in these mice including bone marrow, spleen, liver, and lymph nodes. Prolonged overexpression of MGDF led to decreased marrow hematopoiesis, especially erythropoiesis, with a shift to extramedullary hematopoiesis in the spleen and liver. All the MGDF overexpressing mice analyzed to date developed myelofibrosis and osteosclerosis, possibly induced by megakaryocyte and platelet produced cytokines. No significant effect on other hematopoietic lineages was seen in the MGDF overexpressing mice, showing that the stimulatory effect of MGDF in vivo is restricted to the megakaryocyte lineage.
    Blood 01/1996; 86(11):4025-33. · 9.78 Impact Factor