David E Swayne

Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia, Spain

Are you David E Swayne?

Claim your profile

Publications (264)940.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Highly pathogenic (HP) H5N1 avian influenza virus (AIV) was introduced to Egyptian poultry in 2006 and has since become enzootic. Vaccination has been utilized as a control tool combined with other control methods, but for a variety of reasons, the disease has not been eradicated. In 2007, an antigenically divergent hemagglutinin subclade, 2.2.1.1, emerged from the original clade 2.2.1 viruses.Objectives The objective was to evaluate four diverse AIV isolates for use as vaccines in chickens, including two commercial vaccines and two additional contemporary isolates, against challenge with numerous clade 2.2.1 and clade 2.2.1.1 H5N1 HPAIV Egyptian isolates to assess the variation in protection among different vaccine and challenge virus combinations.Methods Vaccination-challenge studies with four vaccines and up to eight challenge strains with each vaccine for a total of 25 vaccination-challenge groups were conducted with chickens. An additional eight groups served as sham-vaccinated controls. Mortality, mean death time, morbidity, virus, and pre-challenge antibodies were evaluated as metrics of protection. Hemagglutination inhibition data were used to visualize the antigenic relatedness of the isolates.Results and conclusionsAlthough all but one vaccine-challenge virus combination significantly reduced shed and mortality as compared to sham vaccinates, there were differences in protection among the vaccines relative to one another based on challenge virus. This emphasizes the difficulty in vaccinating against diverse, evolving virus populations, and the importance of selecting optimal vaccine seed strains for successful HPAIV control.
    Influenza and Other Respiratory Viruses 10/2014; · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detailed characterization of the host response following infection. To this end, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003) or pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection, but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7 and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses.
    Journal of virology. 07/2014;
  • Source
    Kateri Bertran, David E Swayne
    [Show abstract] [Hide abstract]
    ABSTRACT: High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV.
    Veterinary research. 06/2014; 45(1):60.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Double reassortant H13N8 influenza A virus was isolated from gull in Mongolia. The basic virological characteristics were studied. Complete genome sequence analysis indicated the complicated evolutionary history. The PA gene belongs to classical Avian-like lineage and more likely originated from non-gull avian virus pool. Data confirm the state of extensive geographic mosaicism in AIV from gulls in the Northern Hemisphere.
    Virus Genes 05/2014; · 1.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent outbreak of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry are the likely source of infection for humans based on sequence analysis and virus isolations from live bird markets, but it's not clear which species of birds are most likely to be infected and shedding sufficient levels of virus to infect humans. Intranasal inoculation of chickens, Japanese quail, pigeons, Pekin ducks, Mallard ducks, Muscovy ducks, and Embden geese with 10(6) EID50 of the A/Anhui/1/2013 virus resulted in infection but no clinical disease signs. Virus shedding in quail and chickens was much higher and prolonged than in the other species. Quail effectively transmitted the virus to direct contacts but pigeons and Pekin ducks did not. In all species, virus was detected at much higher titers from oropharyngeal swabs than cloacal swabs. The HA gene from samples collected from selected experimentally infected birds were sequenced and three amino acid differences were commonly observed when compared to A/Anhui/1/2013: N123D, N149D, and L217Q. Leucine at position 217 is highly conserved for avian isolates and is associated with α;2,6 sialic acid binding. Different amino acid combinations were observed suggesting that the inoculum had viral subpopulations that were selected after passage in birds. These experimental studies corroborate that certain poultry species are reservoirs of the H7N9 influenza virus, and that the virus is highly upper respiratorytropic so testing of bird species should preferentially be conducted with oropharyngeal swabs for best sensitivity. The recent outbreak of H7N9 in China has resulted in a number of human infections with a high case fatality rate. The source of the viral outbreak is suspected to be from poultry, but definitive data for the source of the infection is not known. This study provides experimental data to show that quail and chickens are susceptible to infection and shed large amounts of virus and are likely important in the spread of the virus to humans. Other poultry species, including Muscovy ducks, can be infected and shed virus, but are less likely to play a role of transmitting the virus to humans. Pigeons were previously suggested as a possible source of virus because of isolation of virus from several pigeons in poultry markets in China, but experimental studies show they are generally resistant to infection and are unlikely to play a role in spread of the virus.
    Journal of Virology 02/2014; · 5.08 Impact Factor
  • David E Swayne
    Expert Review of Vaccines 01/2014; 11(8). · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.
    Veterinary Research 01/2014; 45(1):1. · 3.43 Impact Factor
  • David E Swayne
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian influenza vaccines for poultry are based on hemagglutinin proteins, and protection is specific to the vaccine subtype. Over 113 billion doses have been used between 2002 and 2010 for high pathogenicity avian influenza control. No universal vaccines are currently available. The majority of avian influenza vaccines are inactivated whole influenza viruses that are grown in embryonating eggs, inactivated, emulsified in oil adjuvant systems, and injected into chickens. Live virus-vectored vaccines such as recombinant viruses of fowl pox, Newcastle disease, herpesvirus of turkeys and duck enteritis containing inserts of avian influenza virus hemagglutinin genes have been used on a more limited basis. In studies to evaluate vaccine efficacy and potency, the protocol design and its implementation should address the biosafety level needed for the work, provide information required for approval by Institutional Biosafety and Animal Care Committees, contain information on seed strain selection, provide needed information on animal subjects and their relevant parameters, and address the selection and use of challenge viruses. Various metrics have been used to directly measure vaccine induced protection. These include prevention of death, clinical signs, and lesions; prevention of decreases in egg production and alterations in egg quality; quantification of the reduction in virus replication and shedding from the respiratory tract and gastrointestinal tracts; and prevention of contact transmission in in vivo poultry experiments. In addition, indirect measures of vaccine potency and protection can be developed and validated against the direct measures and include serological assays in vaccinated poultry and assessment of the content of hemagglutinin antigen in the vaccine. These indirect assessments of protection are useful in determining if vaccine batches have a consistent ability to protect. For adequate potency, vaccines should contain 50 mean protective doses of antigen, which corresponds to 0.3-7.8 μg of hemagglutinin protein, depending on immunogenicity of individual seed strains.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1161:185-198. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine "failures" have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.
    EcoHealth 09/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks.
    Vaccine 08/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.
    Veterinary Research 07/2013; 44(1):62. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In June of 2012, a H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine protection conferred against the virus by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died between 2 and 4 days post inoculation. High virus titers and viral replication in many tissues was demonstrated at 2 days p.i. in infected birds. The Jalisco virus had high sequence similarity of greater than 97% to wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24 nucleotide insert at the hemagglutinin cleavage site which had a 100% sequence identity to chicken 28s ribosomal RNA, suggesting the insert was non-homologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low pathogenic (LP) AI viruses and a 2006 Mexican H7 LPAI virus were tested as antigen in experimental oil emulsion vaccines and injected into chickens three weeks prior to challenge. All H7 vaccines tested provided ≥90 % protection against clinical disease after challenge and decreased the number of birds shedding and the titers of viral shedding. This study demonstrates the pathological consequence of the 2012 Mexican lineage H7N3 HPAI infection of chickens and provides support for effective vaccination programs in poultry against this virus.
    Journal of Virology 06/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and morbidity among numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have become the dominant strain of the H5N1 HPAI virus detected in wild birds, reaching endemic status in domestic birds in select regions of Asia. To address questions regarding the emergence and expansion of clade 2.3.2 viruses, 2 waterfowl species repeatedly involved in outbreaks of H5N1 HPAI viruses, bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea), were inoculated with a representative virus. All of 3 infected ruddy shelducks exhibited neurologic signs and died within 4 to 5 days. Two of 3 infected bar-headed geese had transient weakness but all survived. Viral shedding was predominately via the oropharynx and was detected from 1 to 7 days after inoculation. The severity and distribution of microscopic lesions corresponded with clinical disease and influenza-specific immunohistochemical staining of neurons. The predominant lesions were in the brain and were more severe in ruddy shelducks. Increased caspase-3 reactivity in the brains of all infected birds suggests a role for apoptosis in H5N1 HPAI virus pathogenesis in these species. These results demonstrate that similar to clade 2.2 viruses, a clade 2.3.2 H5N1 HPAI virus is neurotropic in some waterfowl species and can lead to neurologic disease with varying clinical outcomes. This has implications for the role that wild waterfowl may play in transmission of this virus in endemic regions.
    Veterinary Pathology 06/2013; · 1.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four million cases (38,623 metric tons) of liquid egg products are exported from the U.S. annually. The presence of low pathogenic notifiable avian influenza (LPNAI) within a country has resulted in restrictions on trade of egg products. Because liquid egg products are normally pasteurized, this study was performed to see if the standard Salmonella pasteurization parameters used as a food safety measure would be effective at inactivating 5 log10 tissue culture infectious dose (TCID50/ml) of LPNAI A/chicken/New York/13142/94 (H7N2) (LPNAI/NY/94) and another common poultry vaccine virus, lentogenic Newcastle disease virus A/chicken/United States/B1/1948 (lNDV/B1/48) in four egg products. Survival curves were generated to determine D and z values, and the log reduction due to the lethality process. The thermal inactivation of LPNAI/NY/94 and lNDV/B1/48 in sugared (10%), fortified, plain, and salted egg yolk (10%) resulted in D60–63.3 values of less than 1 min, and z ranging from 5.4 to 21.7 °C. The log reduction due to the lethality processes ranged from 5.2D to 48D. The data demonstrated that LPNAI virus and lNDV would not survive the standard Salmonella pasteurization processes for liquid egg products.
    LWT - Food Science and Technology. 06/2013; 52(1):27–30.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were vaccinated with a recombinant fowlpox virus vaccine containing a low pathogenic AI (LPAI) H7 gene insert (rFPV-H7-AIV) and an inactivated oil-emulsified H7N3 AIV vaccine, and subsequently challenged against the Jalisco H7N3 HPAIV. All vaccine combinations provided similar and significant protection against mortality, morbidity, and shedding of challenge virus from the respiratory and gastrointestinal tracts. Serological data also suggested analogous protection from HPAIV among immunized birds. Control of the recent Jalisco AIV infection could be achieved by using various combinations of the two vaccines tested. Even though a single dose of rFPV-H7-AIV vaccine at 1-day-of-age would be the most pragmatic option, optimal protection may require a second dose of vaccine administered in the field.
    Vaccine 05/2013; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection with high-pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry, including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of chickens, adult hens were inoculated intranasally with 3 HPAIV strains. All 3 strains induced lesions in the reproductive tract 36 to 72 hours after inoculation. Positive immunostaining was observed in all segments of the reproductive tract, occurring predominantly in stromal cells and superficial germinal epithelium of the ovary, in mucosal epithelial cells and less often glandular epithelium throughout the oviduct, and in vascular endothelium. This study generates important data and explains previously reported virus isolation from yolk, due to ovarian virus replication, and virus recovery from albumin, due to virus replication in epithelial cells in several segments of the oviduct.
    Veterinary Pathology 05/2013; · 1.93 Impact Factor
  • Revis A Chmielewski, Joan R Beck, David E Swayne
    [Show abstract] [Hide abstract]
    ABSTRACT: Globally, 230,662 metric tons of liquid egg products are marketed each year. The presence of highly pathogenic avian influenza (HPAI) or Newcastle disease in an exporting country can legitimately inhibit trade in eggs and processed egg products; development and validation of pasteurization parameters are essential for safe trade to continue. The HPAI virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2) and velogenic Newcastle disease virus (vNDV) AMPV-1/chicken/California/S01212676/2002 were inoculated into five egg products and heat treated at various times and temperatures to determine thermal inactivation rates to effect a 5-log viral reduction. For HPAIV and vNDV, the pasteurization processes for fortified, sugared, plain, and salted egg yolk, and homogenized whole egg (HPAIV only) products resulted in >5-log reductions in virus at the lower temperature-longer times of U.S. Department of Agriculture (USDA)-approved Salmonella pasteurization processes. In addition, a >5-log reduction of HPAIV was also demonstrated for the five products at the higher temperatures-shorter times of USDA-approved pasteurization processes, whereas the vNDV virus was adequately inactivated in only fortified and plain egg yolk products. For the salted and sugared egg yolk products, an additional 0.65 and 1.6 min of treatment, respectively, at 63.3°C was necessary to inactivate 5 log of vNDV. Egg substitute with fat does not have standard USDA pasteurization criteria, but the D59-value was 0.75 min, adequate to inactivate 5 log of vNDV in <4 min.
    Journal of food protection 04/2013; 76(4):640-5. · 1.83 Impact Factor
  • Erica Spackman, David E Swayne
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination of poultry for avian influenza virus (AIV) is a complex topic as there are numerous technical, logistic and regulatory aspects which must be considered. Historically, control of high pathogenicity (HP) AIV infection in poultry has been accomplished by eradication and stamping out when outbreaks occur locally. Since the H5N1 HPAIV from Asia has spread and become enzootic, vaccination has been used on a long-term basis by some countries to control the virus, other countries have used it temporarily to aid eradication efforts, while others have not used it at all. Currently, H5N1 HPAIV is considered enzootic in China, Egypt, Viet Nam, India, Bangladesh and Indonesia. All but Bangladesh and India have instituted vaccination programs for poultry. Importantly, the specifics of these programs differ to accommodate different situations, resources, and industry structure in each country. The current vaccines most commonly used are inactivated whole virus vaccines, but vectored vaccine use is increasing. Numerous technical improvements to these platforms and novel vaccine platforms for H5N1 vaccines have been reported, but most are not ready to be implemented in the field.
    Virus Research 03/2013; · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In January 2012, influenza virus researchers from around the world announced a voluntary pause of 60 days on any research involving highly pathogenic avian influenza H5N1 viruses leading to the generation of viruses that are more transmissible in mammals. Now that the aims of the voluntary moratorium have been met in some countries and are close to being met in others, we declare an end to the voluntary moratorium on avian flu transmission studies.
    Science 01/2013; · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is an emergent pathogen in the Americas, first reported in New York during 1999, and has since spread across the USA, Central and South America causing neurological disease in humans, horses and some bird species, including domestic geese. No WNV vaccines are licensed in the USA for use in geese. This study reports the development of a domestic goose vaccine efficacy model, based on utilizing multiple parameters to determine protection. To test the model, 47 geese were divided in two experiments, testing five different vaccine groups and two sham groups (challenged and unchallenged). Based on the broad range of results for individual metrics between the Challenged-Sham and Unchallenged-Sham groups, the best parameters to measure protection were Clinical Pathogenicity Index (CPI), plasma virus positive geese on days 1-4 post-inoculation and plasma virus titers, and brain histological lesion rates and severity scores. Compared to the Challenged-Sham group, the fowlpox virus vectored vaccine with inserts of WNV prM and E proteins (vFP2000) provided the best protection with significant differences in all five metrics, followed by the canarypox virus vectored vaccine with inserts of WNV prM and E proteins (vCP2018) with four metrics of protection, recombinant vCP2017 with three metrics and WNV E protein with one. These data indicate that domestic geese can be used in an efficacy model for vaccine protection studies using clinical, plasma virological and brain histopathological parameters to evaluate protection against WNV challenge.
    Vaccine 12/2012; · 3.77 Impact Factor

Publication Stats

9k Citations
940.48 Total Impact Points

Institutions

  • 2013
    • Autonomous University of Barcelona
      Cerdanyola del Vallès, Catalonia, Spain
    • Agricultural Research Service
      Kerrville, Texas, United States
  • 2010–2013
    • Erasmus MC
      • Department of Virology
      Rotterdam, South Holland, Netherlands
    • National Veterinary Research Quarantine Service
      Sŏul, Seoul, South Korea
    • Wisconsin National Primate Research Center
      Madison, Wisconsin, United States
    • MRIGlobal-Midwest Research Institute
      Kansas City, Missouri, United States
  • 1996–2013
    • United States Department of Agriculture
      • Agricultural Research Service (ARS)
      Fort Collins, CO, United States
  • 1988–2013
    • University of Georgia
      • • College of Veterinary Medicine
      • • Department of Population Health
      • • Southeastern Cooperative Wildlife Disease Study
      • • Department of Veterinary Pathology
      Athens, GA, United States
  • 2011
    • Benaroya Research Institute
      Seattle, Washington, United States
  • 2006–2011
    • Mount Sinai School of Medicine
      • Department of Microbiology
      Manhattan, NY, United States
  • 2004–2011
    • University of Washington Seattle
      • Department of Microbiology
      Seattle, WA, United States
    • Tuskegee University
      • Department of Veterinary Medicine
      Tuskegee, AL, United States
    • Armed Forces Institute of Pathology
      Ralalpindi, Punjab, Pakistan
  • 2003–2010
    • State Research Center of Virology and Biotechnology VECTOR
      Novo-Nikolaevsk, Novosibirsk, Russia
    • Centers for Disease Control and Prevention
      • Influenza Division
      Druid Hills, GA, United States
    • Ivanovsky Institute of Virology
      Moskva, Moscow, Russia
  • 2007–2009
    • The Ohio Environmental Protection Agency
      Columbus, Ohio, United States
    • National Veterinary Laboratory
      Franklin Lakes, New Jersey, United States
    • University of Alaska Fairbanks
      Fairbanks, Alaska, United States
    • University of Connecticut
      • Department of Molecular and Cell Biology
      Storrs, Connecticut, United States
  • 1990–2009
    • The Ohio State University
      • Department of Veterinary Preventive Medicine
      Columbus, Ohio, United States
  • 2008
    • University of Ibadan
      Ibadan, Oyo, Nigeria
  • 2003–2006
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
  • 2000–2006
    • Georgia Poultry Laboratory Network
      Georgia, United States