D. J. Champion

Max Planck Institute for Radio Astronomy, Bonn, North Rhine-Westphalia, Germany

Are you D. J. Champion?

Claim your profile

Publications (76)408.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17ms. In addition, PSR J1244-6359 is a mildly-recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09, and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly-discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
    Monthly Notices of the Royal Astronomical Society 04/2015; 450(3). DOI:10.1093/mnras/stv753 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on simultaneous observations of the magnetar SGR J1745-2900 at frequencies $\nu = 2.57$ to $225\,\rm{GHz}$ using the Nancay 94-m equivalent, Effelsberg 100-m, and IRAM 30-m radio telescopes. We detect SGR J1745-2900 up to 225 GHz, the highest radio frequency detection of pulsed emission from a neutron star to date. Strong single pulses are also observed from 4.85 up to 154 GHz. At the millimetre band we see significant flux density and spectral index variabilities on time scales of tens of minutes, plus variability between days at all frequencies. Additionally, SGR J1745-2900 was observed at a different epoch at frequencies 296 to 472 GHz using the APEX 12-m radio telescope, with no detections. Over the period MJD 56859.83-56862.93 the fitted spectrum yields a spectral index of $\left<\alpha\right> = -0.4 \pm 0.1$ for a reference flux density $\left< S_{154} \right> = 1.1 \pm 0.2\rm{\,mJy}$ (with $S_{\nu} \propto {\nu}^{\alpha})$, a flat spectrum alike those of the other radio loud magnetars. These results show that strongly magnetized neutron stars can be effective radio emitters at frequencies notably higher to what was previously known and that pulsar searches in the Galactic Centre are possible in the millimetre band.
    Monthly Notices of the Royal Astronomical Society Letters 04/2015; 451(1). DOI:10.1093/mnrasl/slv063 · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release (Desvignes et al. in prep.). Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar in this dataset, along with common correlated signals including clock, and Solar System ephemeris errors to obtain a robust 95$\%$ upper limit on the dimensionless strain amplitude $A$ of the background of $A<3.0\times 10^{-15}$ at a reference frequency of $1\mathrm{yr^{-1}}$ and a spectral index of $13/3$, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to $\Omega_\mathrm{gw}(f)h^2 < 3.6\times10^{-10}$ at 2.8 nHz. We show that performing such an analysis when fixing the intrinsic noise parameters for the individual pulsars leads to an erroneously stringent upper limit, by a factor $\sim 1.7$. We obtain a difference in the logarithm of the Bayesian evidence between models that include either a correlated background, or uncorrelated common red noise of $-1.0 \pm 0.5$, indicating no support for the presence of a correlated GWB in this dataset. We discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95$\%$ upper limits on the string tension, $G\mu/c^2$, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit $G\mu/c^2<1.3\times10^{-7}$, identical to that set by the Planck Collaboration, combining Planck and high-$\ell$ Cosmic Microwave Background data from other experiments. (Abridged)
  • Source
    M. Imgrund, D. J. Champion, M. Kramer, H. Lesch
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracting Times of Arrival from pulsar radio signals depends on the knowledge of the pulsars pulse profile and how this template is generated. We examine pulsar template generation with Bayesian methods. We will contrast the classical generation mechanism of averaging intensity profiles with a new approach based on Bayesian inference. We introduce the Bayesian measurement model imposed and derive the algorithm to reconstruct a "statistical template" out of noisy data. The properties of these "statistical templates" are analysed with simulated and real measurement data from PSR B1133+16. We explain how to put this new form of template to use in analysing secondary parameters of interest and give various examples: We implement a nonlinear filter for determining ToAs of pulsars. Applying this method to data from PSR J1713+0747 we derive ToAs self consistently, meaning all epochs were timed and we used the same epochs for template generation. While the average template contains fluctuations and noise as unavoidable artifacts, we find that the "statistical template" derived by Bayesian inference quantifies fluctuations and remaining uncertainty. This is why the algorithm suggested turns out to reconstruct templates of statistical significance from ten to fifty single pulses. A moving data window of fifty pulses, taking out one single pulse at the beginning and adding one at the end of the window unravels the characteristics of the methods to be compared. It shows that the change induced in the classical reconstruction is dominated by random fluctuations for the average template, while statistically significant changes drive the dynamics of the proposed method's reconstruction. The analysis of phase shifts with simulated data reveals that the proposed nonlinear algorithm is able to reconstruct correct phase information along with an acceptable estimation of the remaining uncertainty.
    Monthly Notices of the Royal Astronomical Society 01/2015; 449(4). DOI:10.1093/mnras/stv449 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Square Kilometre Array (SKA) will make ground breaking discoveries in pulsar science. In this chapter we outline the SKA surveys for new pulsars, as well as how we will perform the necessary follow-up timing observations. The SKA's wide field-of-view, high sensitivity, multi-beaming and sub-arraying capabilities, coupled with advanced pulsar search backends, will result in the discovery of a large population of pulsars. These will enable the SKA's pulsar science goals (tests of General Relativity with pulsar binary systems, investigating black hole theorems with pulsar-black hole binaries, and direct detection of gravitational waves in a pulsar timing array). Using SKA1-MID and SKA1-LOW we will survey the Milky Way to unprecedented depth, increasing the number of known pulsars by more than an order of magnitude. SKA2 will potentially find all the Galactic radio-emitting pulsars in the SKA sky which are beamed in our direction. This will give a clear picture of the birth properties of pulsars and of the gravitational potential, magnetic field structure and interstellar matter content of the Galaxy. Targeted searches will enable detection of exotic systems, such as the ~1000 pulsars we infer to be closely orbiting Sgr A*, the supermassive black hole in the Galactic Centre. In addition, the SKA's sensitivity will be sufficient to detect pulsars in local group galaxies. To derive the spin characteristics of the discoveries we will perform live searches, and use sub-arraying and dynamic scheduling to time pulsars as soon as they are discovered, while simultaneously continuing survey observations. The large projected number of discoveries suggests that we will uncover currently unknown rare systems that can be exploited to push the boundaries of our understanding of astrophysics and provide tools for testing physics, as has been done by the pulsar community in the past.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a further five recycled pulsar systems in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods ranging from 2 ms to 66 ms, and four are in binary systems with orbital periods between 10.8 hours and 9.0 days. Three of these binary systems are particularly interesting; PSR J1227-6208 has a pulse period of 34.5 ms and the highest mass function of all pulsars with near-circular orbits. The circular orbit suggests that the companion is not another neutron star, so future timing experiments may reveal one of the heaviest white dwarfs ever found ($>$ 1.3 M$_\odot$). Timing observations of PSR J1431$-$4715 indicate that it is eclipsed by its companion which has a mass indicating it belongs to the redback class of eclipsing millisecond pulsars. PSR J1653-2054 has a companion with a minimum mass of only $0.08$ M$_\odot$, placing it among the class of pulsars with low-mass companions. Unlike the majority of such systems, however, no evidence of eclipses is seen at 1.4 GHz.
    Monthly Notices of the Royal Astronomical Society 11/2014; 446(4). DOI:10.1093/mnras/stu2350 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky, and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array collaboration undertook a 24-hour global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1 - 24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nancay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized root-N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the S/N of single pulses exceeds unity, as measured using the eight telescopes that observed at L-band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, instrumentation enabling pulsar observations with unprecedentedly high fractional bandwidth has been under development which can be used to substantially improve the precision of pulsar timing experiments. The traditional template-matching method used to calculate pulse times-of-arrival (ToAs), may not function effectively on these broadband data due to a variety of effects such as diffractive scintillation in the interstellar medium, profile variation as a function of frequency, dispersion measure (DM) evolution and so forth. In this paper, we describe the channelised Discrete Fourier Transform method that can greatly mitigate the influence of the aforementioned effects when measuring ToAs from broadband timing data. The method is tested on simulated data, and its potential in improving timing precision is shown. We further apply the method to PSR J1909$-$3744 data collected at the Nan\c{c}ay Radio Telescope with the Nan\c{c}ay Ultimate Pulsar Processing Instrument. We demonstrate a removal of systematics due to the scintillation effect as well as improvement on ToA measurement uncertainties. Our method also determines temporal variations in dispersion measure, which are consistent with multi-channel timing approaches used earlier.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). DOI:10.1093/mnras/stu1420 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo ($32^{\circ}\lesssim \ell \lesssim 77^{\circ}$ and $168^{\circ}\lesssim \ell \lesssim 214^{\circ}$) close to the Galactic plane ($|b|\lesssim5^{\circ}$) for pulsars. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in $\ell$ and $|b|\lesssim1^{\circ}$) and detected 45 pulsars. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95\% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9,000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively) we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected $1,000\substack{+330 \\ -230}$ normal pulsars and $30\substack{+200 \\ -20}$ millisecond pulsars. Identical estimation techniques predict that $490\substack{+160 \\ -115}$ normal pulsars and $12\substack{+70 \\ -5}$ millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64-m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. In addition, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of $10^{-23}$, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in `very low-mass binary pulsars', implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.
    Monthly Notices of the Royal Astronomical Society 01/2014; 439(2). DOI:10.1093/mnras/stu067 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We conducted a deep search of the irregular blue compact dwarf galaxy IC 10 in search of potential radio pulsars. To date the only extragalactic pulsars detected have been found in the Magellanic Clouds; however as a galaxy that is in many ways similar to (and has a higher star formation rate than) the Small Magellanic Cloud, IC 10 may also be home to some detectable pulsars. Yet it is also important to take into account IC 10’s poorly known distance that may be 10 to 15 times greater than that of the SMC. We made three separate observations for a total of 16 hours (the longest of which was 6 hours) at 820 MHz with the Green Bank Telescope using the GUPPI backend that yielded a bandwidth of 200 MHz and a time resolution of 204.8 μs. The data was searched up to a DM of 2000 and an acceleration zmax of 50 using the PRESTO software package. However, we were unable to identify any continuous pulsed signals, to which we had a flux density sensitivity of 0.015 mJy, or giant single pulses, to which our sensitivity for a 10ms pulse at 5-sigma sensitivity was 20mJy. Our findings support the hypothesis that IC 10 has had a very recent burst in star formation, as is evidenced by the exceptionally high number of Wolf-Rayet stars, which have not yet resulted in a correspondingly high supernova rate, and is suggested by the lack of supernova remnant detections in the galaxy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422-6138, J1522-5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range $6\times10^{34}$ - $10^{36}$ erg s$^{-1}$. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.
    The Astrophysical Journal 11/2013; DOI:10.1088/2041-8205/779/1/L11 · 6.28 Impact Factor
  • Michael Kramer, David J. Champion
    [Show abstract] [Hide abstract]
    ABSTRACT: The European Pulsar Timing Array (EPTA) and the Large European Array for Pulsars (LEAP) play crucial roles in the global effort to detect gravitational waves (GWs) with a Pulsar Timing Array (PTA) experiment. While the EPTA uses five of the world’s largest cm-radio telescopes, LEAP harvests their combined power to synthesize a 194 m equivalent dish to provide high-precision PTA data for most of the sky. The EPTA has already produced a large variety of results, including astrophysical studies of individual pulsars, tests of theories of gravity, stringent limits on a GW background produced by super-massive binary black holes or the vibration of cosmic strings. It has also undertaken the development of new analysis methods and techniques, and studies of the astrophysics and population of expected GW background sources. This review gives an overview of the EPTA and LEAP set-ups and corresponding activities.
    Classical and Quantum Gravity 11/2013; 30(22):4009-. DOI:10.1088/0264-9381/30/22/224009 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present temporal scattering measurements of single pulses and average profiles of PSR J1745--2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 - 18.95 GHz using the Effelsberg 100-m Radio Telescope, the Nan\c{c}ay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. The high dispersion measure and rotation measure of the magnetar suggest that it is close to Sgr A* (within ~0.1 pc). This is the first object in the GC with both pulse broadening and angular broadening measurements. We measure a pulse broadening spectral index of alpha = -3.8 +/- 0.2 and a pulse broadening time scale at 1 GHz of tau_GHz = 1.3 +/- 0.2 s, which is several orders of magnitude lower than the scattering predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering timescale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, we believe that there are many canonical and millisecond pulsars in the GC, and not surprisingly, scattering regions in the GC have complex spatial structures.
    The Astrophysical Journal 09/2013; 780(1). DOI:10.1088/2041-8205/780/1/L3 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission-from radio to X-ray wavelengths-from the black hole.
    Nature 08/2013; 501(7467). DOI:10.1038/nature12499 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the setup and initial discoveries of the Northern High Time Resolution Universe survey for pulsars and fast transients, the first major pulsar survey conducted with the 100-m Effelsberg radio telescope and the first in 20 years to observe the whole northern sky at high radio frequencies. Using a newly developed 7-beam receiver system combined with a state-of-the-art polyphase filterbank, we record an effective bandwidth of 240 MHz in 410 channels centred on 1.36 GHz with a time resolution of 54 $\mu$s. Such fine time and frequency resolution increases our sensitivity to millisecond pulsars and fast transients, especially deep inside the Galaxy, where previous surveys have been limited due to intra-channel dispersive smearing. To optimise observing time, the survey is split into three integration regimes dependent on Galactic latitude, with 1500-s, 180-s and 90-s integrations for latitude ranges $|b|<3.5^{\circ}$, $|b|<15^{\circ}$ and $|b|>15^{\circ}$, respectively. The survey has so far resulted in the discovery of 15 radio pulsars, including a pulsar with a characteristic age of $\sim18$ kyr, {PSR J2004+3429}, and a highly eccentric, binary millisecond pulsar, {PSR J1946+3417}. All newly discovered pulsars are timed using the 76-m Lovell radio telescope at the Jodrell Bank Observatory and the Effelsberg radio telescope. We present timing solutions for all newly discovered pulsars and discuss potential supernova remnant associations for {PSR J2004+3429}.
    Monthly Notices of the Royal Astronomical Society 08/2013; 435(3). DOI:10.1093/mnras/stt1440 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the discovery and timing parameters for five millisecond pulsars (MSPs), four in binary systems with probable white dwarf companions and one isolated, found in ongoing processing of the High Time Resolution Universe Pulsar Survey (HTRU). We also present high quality polarimetric data on four of them. These further discoveries confirm the high potential of our survey in finding pulsars with very short spin periods. At least two of these five MSPs are excellent candidates to be included in the Pulsar Timing Array projects. Thanks to the wealth of MSP discoveries in the HTRU survey, we revisit the question of whether the luminosity distributions of isolated and binary MSPs are different. Using the Cordes and Lazio distance model and our new and catalogue flux density measurements, we find that 41 of the 42 most luminous MSPs in the Galactic disk are in binaries and a statistical analysis suggests that the luminosity functions differ with 99.9% significance. We conclude that the formation process that leads to solitary MSPs affects their luminosities, despite their period and period derivatives being similar to those of pulsars in binary systems.
    Monthly Notices of the Royal Astronomical Society 07/2013; 433(1). DOI:10.1093/mnras/stt721 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational preferred frame effects are generally predicted by alternative theories that exhibit an isotropic violation of local Lorentz invariance of gravity. They are described by three parameters in the parametrized post-Newtonian formalism. One of their strong-field generalizations, $\hat \alpha_2$, induces a precession of a pulsar's spin around its movement direction with respect to the preferred frame. We constrain $\hat \alpha_2$ by using the non-detection of such a precession using the characteristics of the pulse profile. In our analysis we use a large number of observations from the 100-m Effelsberg radio telescope, which cover a time span of approximately 15 years. By combining data from two solitary millisecond pulsars, PSRs B1937+21 and J1744-1134, we get a limit of $|\hat \alpha_2| < 1.6 \times 10^{-9}$ at 95% confidence level, which is more than two orders of magnitude better than its best weak-field counterpart from the Solar system.
    Classical and Quantum Gravity 07/2013; 30(16). DOI:10.1088/0264-9381/30/16/165019 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40° from the Galactic plane. The bursts' properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.
    Science 07/2013; 341(6141):53-6. DOI:10.1126/science.1236789 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used millisecond pulsars (MSPs) from the southern High Time Resolution Universe (HTRU) intermediate latitude survey area to simulate the distribution and total population of MSPs in the Galaxy. Our model makes use of the scale factor method, which estimates the ratio of the total number of MSPs in the Galaxy to the known sample. Using our best fit value for the z-height, z=500 pc, we find an underlying population of MSPs of 8.3(\pm 4.2)*10^4 sources down to a limiting luminosity of L_min=0.1 mJy kpc^2 and a luminosity distribution with a steep slope of d\log N/d\log L = -1.45(\pm 0.14). However, at the low end of the luminosity distribution, the uncertainties introduced by small number statistics are large. By omitting very low luminosity pulsars, we find a Galactic population above L_min=0.2 mJy kpc^2 of only 3.0(\pm 0.7)*10^4 MSPs. We have also simulated pulsars with periods shorter than any known MSP, and estimate the maximum number of sub-MSPs in the Galaxy to be 7.8(\pm 5.0)*10^4 pulsars at L=0.1 mJy kpc^2. In addition, we estimate that the high and low latitude parts of the southern HTRU survey will detect 68 and 42 MSPs respectively, including 78 new discoveries. Pulsar luminosity, and hence flux density, is an important input parameter in the model. Some of the published flux densities for the pulsars in our sample do not agree with the observed flux densities from our data set, and we have instead calculated average luminosities from archival data from the Parkes Telescope. We found many luminosities to be very different than their catalogue values, leading to very different population estimates. Large variations in flux density highlight the importance of including scintillation effects in MSP population studies.
    Monthly Notices of the Royal Astronomical Society 06/2013; 434(2). DOI:10.1093/mnras/stt1103 · 5.23 Impact Factor

Publication Stats

1k Citations
408.09 Total Impact Points

Institutions

  • 2010–2015
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
    • Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute)
      Potsdam, Brandenburg, Germany
  • 2013
    • Leibniz Universität Hannover
      Hanover, Lower Saxony, Germany
  • 2004–2013
    • The University of Manchester
      • Jodrell Bank Centre for Astrophysics
      Manchester, England, United Kingdom
  • 2012
    • University of Wisconsin - Milwaukee
      • Department of Physics
      Milwaukee, Wisconsin, United States
    • Columbia University
      • Columbia Astrophysics Laboratory
      New York City, New York, United States
  • 2011
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 2009
    • University of British Columbia - Vancouver
      • Department of Physics and Astronomy
      Vancouver, British Columbia, Canada
    • Eureka Scientific
      Oakland, California, United States
  • 2007–2008
    • McGill University
      • Department of Physics
      Montréal, Quebec, Canada