D A Lawrence

University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Are you D A Lawrence?

Claim your profile

Publications (2)8.55 Total impact

  • Source
    S A Leadon, D A Lawrence
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the role of transcription in directing repair of DNA damage in active genes by comparing the repair of thymine glycols produced by H2O2 and of UV-induced pyrimidine dimers on each strand of the GAL7 gene of Saccharomyces cerevisiae. Repair of both thymine glycols and pyrimidine dimers on the transcribed strand of the gene occurs two to three times faster than on its nontranscribed strand or in the genome overall. When the gene is inactive, no preferential or strand-selective repair is observed. Using a yeast strain containing a temperature-sensitive mutation in one of the subunits of RNA polymerase II, we find that inactivating RNA polymerase II by shifting the cells to the nonpermissive temperature during repair eliminates the strand selectivity of repair under conditions where repair on the nontranscribed strand of the gene and in the genome overall are only slightly affected. Our observation of strand-selective repair of thymine glycols in the GAL7 gene is the first evidence that this repair process occurs for a nonbulky lesion. In addition, we demonstrate that the transcriptional complex plays a critical role in directing repair to the transcribed strand of active genes.
    Journal of Biological Chemistry 12/1992; 267(32):23175-82. · 4.65 Impact Factor
  • S A Leadon, D A Lawrence
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the possible role of transcription in directing repair of DNA damage in active genes, we compared repair of UV- and aflatoxin B1-induced damage on each strand of the human metallothionein (hMT) genes. Repair on the transcribed strand of an active hMT gene occurs at least 3 times faster than that on its nontranscribed strand. Both strands of inactive genes and both strands of a regulatory region 5' to an active gene are not repaired at this faster rate. Inducing higher levels of transcription with dexamethasone selectively increased the rate of repair on only the transcribed strand of the induced gene, while treatment of cells with alpha-amanitin eliminated the strand-selective repair. These results demonstrate that repair on the transcribed strand of a gene is independent of repair on the nontranscribed strand and that the transcriptional complex plays a role in directing repair to the transcribed strand of active genes.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 08/1991; 255(1):67-78. · 3.90 Impact Factor

Publication Stats

142 Citations
8.55 Total Impact Points

Top co-authors

Institutions

  • 1992
    • University of North Carolina at Chapel Hill
      • Department of Radiation Oncology
      Chapel Hill, NC, United States
  • 1991
    • University of California, Berkeley
      • Department of Molecular and Cell Biology
      Berkeley, MO, United States