Colleen L Doçi

University of Chicago, Chicago, Illinois, United States

Are you Colleen L Doçi?

Claim your profile

Publications (6)31.55 Total impact

  • Source
    C L Doçi, G Zhou, M W Lingen
    [Show abstract] [Hide abstract]
    ABSTRACT: Thrombospondin-1 (TSP-1) is an endogenous inhibitor of angiogenesis whose expression suppresses tumor growth in vivo. Like many angiogenesis-related genes, TSP-1 expression is tightly controlled by various mechanisms, but there is little data regarding the contribution of post-transcriptional processing to this regulation. NOL7 is a novel tumor suppressor that induces an antiangiogenic phenotype and suppresses tumor growth, in part through upregulation of TSP-1. Here we demonstrate that NOL7 is an mRNA-binding protein that must localize to the nucleoplasm to exert its antiangiogenic and tumor suppressive effects. There, it associates with the RNA-processing machinery and specifically interacts with TSP-1 mRNA through its 3'UTR. Reintroduction of NOL7 into SiHa cells increases luciferase expression through interaction with the TSP-1 3'UTR at both the mRNA and protein levels. NOL7 also increases endogenous TSP-1 mRNA half-life. Further, NOL7 post-transcriptional stabilization is observed in a subset of angiogenesis-related mRNAs, suggesting that the stabilization of TSP-1 may be part of a larger novel mechanism. These data demonstrate that NOL7 significantly alters TSP-1 expression and may be a master regulator that coordinates the post-transcriptional expression of key signaling factors critical for the regulation of the angiogenic phenotype.Oncogene advance online publication, 22 October 2012; doi:10.1038/onc.2012.464.
    Oncogene 10/2012; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: The diagnosis of cervical lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) patients constitutes an essential requirement for clinical staging and treatment selection. However, clinical assessment by physical examination and different imaging modalities, as well as by histological examination of routine lymph node cryosections can miss micrometastases, while false positives may lead to unnecessary elective lymph node neck resections. Here, we explored the feasibility of developing a sensitive assay system for desmoglein 3 (DSG3) as a predictive biomarker for lymph node metastasis in HNSCC. MATERIALS AND METHODS: DSG3 expression was determined in multiple general cancer- and HNSCC-tissue microarrays (TMAs), in negative and positive HNSCC metastatic cervical lymph nodes, and in a variety of HNSCC and control cell lines. A nanostructured immunoarray system was developed for the ultrasensitive detection of DSG3 in lymph node tissue lysates. RESULTS: We demonstrate that DSG3 is highly expressed in all HNSCC lesions and their metastatic cervical lymph nodes, but absent in non-invaded lymph nodes. We show that DSG3 can be rapidly detected with high sensitivity using a simple microfluidic immunoarray platform, even in human tissue sections including very few HNSCC invading cells, hence distinguishing between positive and negative lymph nodes. CONCLUSION: We provide a proof of principle supporting that ultrasensitive nanostructured assay systems for DSG3 can be exploited to detect micrometastatic HNSCC lesions in lymph nodes, which can improve the diagnosis and guide in the selection of appropriate therapeutic intervention modalities for HNSCC patients.
    Oral Oncology 09/2012; · 2.70 Impact Factor
  • Source
    Atsuko Sakurai, Colleen L Doçi, J Silvio Gutkind
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis, the formation of new blood vessels from preexisting vasculature, is essential for many physiological processes, and aberrant angiogenesis contributes to some of the most prevalent human diseases, including cancer. Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals. While pro-angiogenic signaling has been extensively investigated, how developmentally regulated, naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood. In this review, we summarize the current knowledge on how semaphorins and their receptors, plexins and neuropilins, control normal and pathological angiogenesis, with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells. This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.
    Cell Research 12/2011; 22(1):23-32. · 10.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NOL7 is a putative tumor suppressor gene localized to 6p23, a region with frequent loss of heterozygosity in a number of cancers, including cervical cancer (CC). We have previously demonstrated that reintroduction of NOL7 into CC cells altered the angiogenic phenotype and suppressed tumor growth in vivo by 95%. Therefore, to understand its mechanism of inactivation in CC, we investigated the genetic and epigenetic regulation of NOL7. NOL7 mRNA and protein levels were assessed in 13 CC cell lines and 23 consecutive CC specimens by real-time quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Methylation of the NOL7 promoter was analyzed by bisulfite sequencing and mutations were identified through direct sequencing. A CpG island with multiple CpG dinucleotides spanned the 5' untranslated region and first exon of NOL7. However, bisulfite sequencing failed to identify persistent sites of methylation. Mutational sequencing revealed that 40% of the CC specimens and 31% of the CC cell lines harbored somatic mutations that may affect the in vivo function of NOL7. Endogenous NOL7 mRNA and protein expression in CC cell lines were significantly decreased in 46% of the CC cell lines. Finally, immunohistochemistry demonstrated strong NOL7 nucleolar staining in normal tissues that decreased with histologic progression toward CC. NOL7 is inactivated in CC in accordance with the Knudson 2-hit hypothesis through loss of heterozygosity and mutation. Together with evidence of its in vivo tumor suppression, these data support the hypothesis that NOL7 is the legitimate tumor suppressor gene located on 6p23.
    International journal of gynecological pathology: official journal of the International Society of Gynecological Pathologists 11/2011; 31(1):15-24. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent therapeutic advances, several factors, including field cancerization, have limited improvements in long-term survival for oral squamous cell carcinoma (OSCC). Therefore, comprehensive treatment plans must include improved chemopreventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) mouse model, we tested the hypothesis that ZD6474 (Vandetanib, ZACTIMA) is an effective chemopreventive agent. CBA mice were fed 4-NQO (100 μg/mL) in their drinking water for 8 weeks and then randomized to no treatment or oral ZD6474 (25 mg/kg/d) for 24 weeks. The percentage of animals with OSCC was significantly different between the two groups (71% in control and 12% in the ZD6474 group; P ≤ 0.001). The percentage of mice with dysplasia or OSCC was significantly different (96% in the control and 28% in the ZD6474 group; P ≤ 0.001). Proliferation and microvessel density scores were significantly decreased in the ZD6474 group (P ≤ 0.001 for both). Although proliferation and microvessel density increased with histologic progression in control and treatment cohorts, epidermal growth factor receptor and vascular endothelial growth factor receptor-2 phosphorylation was decreased in the treatment group for each histologic diagnosis, including mice harboring tumors. OSCC from ZD6474-treated mice exhibited features of epithelial to mesenchymal transition, as shown by loss E-cadherin and gain of vimentin protein expression. These data suggest that ZD6474 holds promise as an OSCC chemopreventive agent. They further suggest that acquired resistance to ZD6474 may be mediated by the expression of an epithelial to mesenchymal transition phenotype. Finally, the data suggests that this model is a useful preclinical platform to investigate the mechanisms of acquired resistance in the chemopreventive setting.
    Cancer Prevention Research 10/2010; 3(11):1493-502. · 4.89 Impact Factor
  • Source
    Guolin Zhou, Colleen L Doçi, Mark W Lingen
    [Show abstract] [Hide abstract]
    ABSTRACT: NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of in vivo tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated. An in vitro import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport. Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7. These results identify the minimal sequences required for the active targeting of NOL7 to the nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7 localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and nucleolus.
    BMC Cell Biology 01/2010; 11:74. · 2.81 Impact Factor